Modular quantum processor with an all-to-all reconfigurable router
- URL: http://arxiv.org/abs/2407.20134v2
- Date: Mon, 16 Sep 2024 23:46:05 GMT
- Title: Modular quantum processor with an all-to-all reconfigurable router
- Authors: Xuntao Wu, Haoxiong Yan, Gustav Andersson, Alexander Anferov, Ming-Han Chou, Christopher R. Conner, Joel Grebel, Yash J. Joshi, Shiheng Li, Jacob M. Miller, Rhys G. Povey, Hong Qiao, Andrew N. Cleland,
- Abstract summary: We propose a high-speed on-chip quantum processor that supports reconfigurable all-to-all coupling with a large on-off ratio.
We demonstrate reconfigurable controlled-Z gates across all qubit pairs, with a benchmarked average fidelity of $96.00%pm0.08%$.
We also generate multi-qubit entanglement, distributed across the separate modules, demonstrating GHZ-3 and GHZ-4 states with fidelities of $88.15%pm0.24%$ and $75.18%pm0.11%$, respectively.
- Score: 34.39074227074929
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Superconducting qubits provide a promising approach to large-scale fault-tolerant quantum computing. However, qubit connectivity on a planar surface is typically restricted to only a few neighboring qubits. Achieving longer-range and more flexible connectivity, which is particularly appealing in light of recent developments in error-correcting codes, however usually involves complex multi-layer packaging and external cabling, which is resource-intensive and can impose fidelity limitations. Here, we propose and realize a high-speed on-chip quantum processor that supports reconfigurable all-to-all coupling with a large on-off ratio. We implement the design in a four-node quantum processor, built with a modular design comprising a wiring substrate coupled to two separate qubit-bearing substrates, each including two single-qubit nodes. We use this device to demonstrate reconfigurable controlled-Z gates across all qubit pairs, with a benchmarked average fidelity of $96.00\%\pm0.08\%$ and best fidelity of $97.14\%\pm0.07\%$, limited mainly by dephasing in the qubits. We also generate multi-qubit entanglement, distributed across the separate modules, demonstrating GHZ-3 and GHZ-4 states with fidelities of $88.15\%\pm0.24\%$ and $75.18\%\pm0.11\%$, respectively. This approach promises efficient scaling to larger-scale quantum circuits, and offers a pathway for implementing quantum algorithms and error correction schemes that benefit from enhanced qubit connectivity.
Related papers
- Parametric multi-element coupling architecture for coherent and
dissipative control of superconducting qubits [0.0]
We present a superconducting qubit architecture based on tunable parametric interactions to perform two-qubit gates, reset, leakage recovery and to read out the qubits.
We experimentally demonstrate a controlled-Z gate with a fidelity of $98.30pm 0.23 %$, a reset operation that unconditionally prepares the qubit ground state with a fidelity of $99.80pm 0.02 %$ and a leakage recovery operation with a $98.5pm 0.3 %$ success probability.
arXiv Detail & Related papers (2024-03-04T16:49:36Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Optimizing quantum gates towards the scale of logical qubits [78.55133994211627]
A foundational assumption of quantum gates theory is that quantum gates can be scaled to large processors without exceeding the error-threshold for fault tolerance.
Here we report on a strategy that can overcome such problems.
We demonstrate it by choreographing the frequency trajectories of 68 frequency-tunablebits to execute single qubit while superconducting errors.
arXiv Detail & Related papers (2023-08-04T13:39:46Z) - Tunable coupler to fully decouple and maximally localize superconducting
qubits [0.0]
We propose a new coupler model that allows to fully decouple dispersively detuned Transmon qubits from each other.
We show that our scheme can be applied to large integrated qubit grids.
arXiv Detail & Related papers (2023-06-29T15:04:36Z) - Graph test of controllability in qubit arrays: A systematic way to
determine the minimum number of external controls [62.997667081978825]
We show how to leverage an alternative approach, based on a graph representation of the Hamiltonian, to determine controllability of arrays of coupled qubits.
We find that the number of controls can be reduced from five to one for complex qubit-qubit couplings.
arXiv Detail & Related papers (2022-12-09T12:59:44Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - Building Blocks of a Flip-Chip Integrated Superconducting Quantum
Processor [1.5465992780403517]
We have integrated single and coupled superconducting transmon qubits into flip-chip modules.
We demonstrate time-averaged coherence times exceeding $90,mu s$, single-qubit gate fidelities exceeding $99.9%$, and two-qubit gate fidelities above $98.6%$.
arXiv Detail & Related papers (2021-12-06T00:14:59Z) - Scalable and robust quantum computing on qubit arrays with fixed
coupling [0.0]
We propose a scheme for scalable and robust quantum computing on two-dimensional arrays of qubits with fixed longitudinal coupling.
This opens the possibility for bypassing the device complexity associated with tunable couplers required in conventional quantum computing hardware.
arXiv Detail & Related papers (2021-10-14T21:45:49Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Demonstration of an All-Microwave Controlled-Phase Gate between Far
Detuned Qubits [0.0]
We present an all-microwave controlled-phase gate between two transversely coupled transmon qubits.
Our gate constitutes a promising alternative to present two-qubit gates and could have hardware scaling advantages in large-scale quantum processors.
arXiv Detail & Related papers (2020-06-18T16:08:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.