論文の概要: AI Agents: Evolution, Architecture, and Real-World Applications
- arxiv url: http://arxiv.org/abs/2503.12687v1
- Date: Sun, 16 Mar 2025 23:07:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 15:59:47.225099
- Title: AI Agents: Evolution, Architecture, and Real-World Applications
- Title(参考訳): AIエージェント:進化、アーキテクチャ、実世界のアプリケーション
- Authors: Naveen Krishnan,
- Abstract要約: 本稿は、AIエージェントの進化、アーキテクチャ、実践的応用を、AIエージェントの初期から、認識、計画、ツール使用のための専用のモジュールを備えた大規模言語モデルを統合した近代的なシステムへ移行する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper examines the evolution, architecture, and practical applications of AI agents from their early, rule-based incarnations to modern sophisticated systems that integrate large language models with dedicated modules for perception, planning, and tool use. Emphasizing both theoretical foundations and real-world deployments, the paper reviews key agent paradigms, discusses limitations of current evaluation benchmarks, and proposes a holistic evaluation framework that balances task effectiveness, efficiency, robustness, and safety. Applications across enterprise, personal assistance, and specialized domains are analyzed, with insights into future research directions for more resilient and adaptive AI agent systems.
- Abstract(参考訳): 本稿では,AIエージェントの進化,アーキテクチャ,実践的応用を,ルールに基づく初期化から,認識,計画,ツール使用のための専用モジュールを備えた大規模言語モデルを統合した近代的なシステムまで検討する。
理論的基盤と実世界の展開の両方を強調し、主要なエージェントパラダイムをレビューし、現在の評価ベンチマークの限界について議論し、タスクの有効性、効率性、堅牢性、安全性のバランスをとるための総合的な評価フレームワークを提案する。
エンタープライズ、パーソナライズ、専門分野にわたるアプリケーションを分析し、よりレジリエントで適応的なAIエージェントシステムのための将来の研究方向について洞察する。
関連論文リスト
- Agentic Retrieval-Augmented Generation: A Survey on Agentic RAG [0.8463972278020965]
大規模言語モデル(LLM)は、人間のようなテキスト生成や自然言語理解を可能にすることによって、人工知能(AI)に革命をもたらした。
Retrieval Augmented Generation (RAG) がソリューションとして登場し、リアルタイムデータ検索を統合して文脈に関連のある応答を提供することでLLMを強化している。
Agentic Retrieval-Augmented Generation (RAG)は、自律的なAIエージェントをRAGパイプラインに埋め込むことによって、これらの制限を超越する。
論文 参考訳(メタデータ) (2025-01-15T20:40:25Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
本稿では,AIを活用したデータ分析ツールの可能性について考察する。
我々は、大規模言語とマルチモーダルモデルの出現が、データ分析ワークフローの様々な段階を強化する新しい機会を提供する方法について検討する。
次に、直感的なインタラクションを促進し、ユーザ信頼を構築し、AI支援分析ワークフローを複数のアプリにわたって合理化するための、人間中心の設計原則を調べます。
論文 参考訳(メタデータ) (2024-09-27T06:31:03Z) - Agent-E: From Autonomous Web Navigation to Foundational Design Principles in Agentic Systems [1.079505444748609]
本稿では,新しいWebエージェントであるAgent-Eの構築について紹介する。
Agent-Eは、最先端のWebエージェントよりも多くのアーキテクチャ改善を導入している。
我々は,Agent-Eが他のSOTAテキストおよびマルチモーダルWebエージェントを,ほとんどのカテゴリで10~30%上回っていることを示す。
論文 参考訳(メタデータ) (2024-07-17T21:44:28Z) - The Landscape of Emerging AI Agent Architectures for Reasoning, Planning, and Tool Calling: A Survey [0.0]
本稿では,AIエージェントの実装の最近の進歩について考察する。
推論、計画、ツールの実行能力の強化を必要とする複雑な目標を達成する能力に重点を置いている。
論文 参考訳(メタデータ) (2024-04-17T17:32:41Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - AgentBoard: An Analytical Evaluation Board of Multi-turn LLM Agents [74.16170899755281]
本稿では,LLMエージェントの分析的評価に適したオープンソース評価フレームワークであるAgentBoardを紹介する。
AgentBoardは、インクリメンタルな進歩と包括的な評価ツールキットをキャプチャする、きめ細かい進捗率のメトリクスを提供する。
これはLLMエージェントの能力と限界に光を当てるだけでなく、その性能の解釈可能性も最前線に広める。
論文 参考訳(メタデータ) (2024-01-24T01:51:00Z) - Exploring Large Language Model based Intelligent Agents: Definitions,
Methods, and Prospects [32.91556128291915]
本稿では, シングルエージェントおよびマルチエージェントシステムにおける知的エージェントの詳細な概要を提供するため, 現在の研究状況について調査する。
定義、研究フレームワーク、その構成、認知と計画方法、ツール利用、環境フィードバックに対する反応などの基礎的な構成要素を網羅する。
我々は、AIと自然言語処理の進化の展望を考慮し、LLMベースのエージェントの展望を思い浮かべて結論付ける。
論文 参考訳(メタデータ) (2024-01-07T09:08:24Z) - Pangu-Agent: A Fine-Tunable Generalist Agent with Structured Reasoning [50.47568731994238]
人工知能(AI)エージェント作成の鍵となる方法は強化学習(RL)である
本稿では,構造化推論をAIエージェントのポリシーに統合し,学習するための一般的なフレームワークモデルを提案する。
論文 参考訳(メタデータ) (2023-12-22T17:57:57Z) - Towards Responsible Generative AI: A Reference Architecture for Designing Foundation Model based Agents [28.406492378232695]
ファンデーションモデルに基づくエージェントは、ファンデーションモデルの能力から自律性を引き出す。
本稿では,基礎モデルに基づくエージェントの設計におけるガイダンスとして機能するパターン指向参照アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-11-22T04:21:47Z) - Levels of AGI for Operationalizing Progress on the Path to AGI [64.59151650272477]
本稿では,人工知能(AGI)モデルとその前駆体の性能と動作を分類する枠組みを提案する。
このフレームワークは、AGIのパフォーマンス、一般性、自律性のレベルを導入し、モデルを比較し、リスクを評価し、AGIへの道筋に沿って進捗を測定する共通の言語を提供する。
論文 参考訳(メタデータ) (2023-11-04T17:44:58Z) - Modelling Multi-Agent Epistemic Planning in ASP [66.76082318001976]
本稿では,マルチショット・アンサー・セット・プログラミング・ベース・プランナの実装について述べる。
本稿は, アドホックなエピステミック状態表現とASPソルバの効率を生かしたプランナーが, 文献から収集したベンチマークに対して, 競合的な性能を示すことを示す。
論文 参考訳(メタデータ) (2020-08-07T06:35:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。