論文の概要: Dynamic Angle Selection in X-Ray CT: A Reinforcement Learning Approach to Optimal Stopping
- arxiv url: http://arxiv.org/abs/2503.12688v1
- Date: Sun, 16 Mar 2025 23:09:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 16:00:33.469142
- Title: Dynamic Angle Selection in X-Ray CT: A Reinforcement Learning Approach to Optimal Stopping
- Title(参考訳): X線CTにおける動的角度選択:最適停止に対する強化学習アプローチ
- Authors: Tianyuan Wang,
- Abstract要約: 産業用X線CT(Industrial X-ray Computed Tomography)では,高速インライン検査の必要性が重要である。
スパース・アングル・トモグラフィーは、必要な投影数を減らし、処理と資源の保存を加速することで重要な役割を担っている。
- 参考スコア(独自算出の注目度): 1.7404865362620803
- License:
- Abstract: In industrial X-ray Computed Tomography (CT), the need for rapid in-line inspection is critical. Sparse-angle tomography plays a significant role in this by reducing the required number of projections, thereby accelerating processing and conserving resources. Most existing methods aim to balance reconstruction quality and scanning time, typically relying on fixed scan durations. Adaptive adjustment of the number of angles is essential; for instance, more angles may be required for objects with complex geometries or noisier projections. The concept of optimal stopping, which dynamically adjusts this balance according to varying industrial needs, remains underutilized. Building on our previous work, we integrate optimal stopping into sequential Optimal Experimental Design (OED). We propose a novel method for computing the policy gradient within the Actor-Critic framework, enabling the development of adaptive policies for informative angle selection and scan termination. Additionally, we investigated the gap between simulation and real-world applications in the context of the developed learning-based method. Our trained model, developed using synthetic data, demonstrates reliable performance when applied to real-world data. This approach enhances the flexibility of CT operations and expands the applicability of sparse-angle tomography in industrial settings.
- Abstract(参考訳): 産業用X線CT(Industrial X-ray Computed Tomography)では,高速インライン検査の必要性が重要である。
スパース・アングル・トモグラフィーは、必要な投影数を減らし、処理と資源の保存を加速することで重要な役割を担っている。
既存の手法の多くは、通常、一定のスキャン期間に依存するため、復元品質とスキャン時間のバランスをとることを目的としている。
例えば、複雑なジオメトリーやノイズのある射影を持つ対象に対してより多くの角度を必要とすることがある。
様々な産業ニーズに応じて動的にこのバランスを調整する最適停止の概念は未利用のままである。
先行研究に基づいて, 最適停止を逐次最適実験設計(OED)に統合する。
本稿では,アクタ・クリティカル・フレームワーク内のポリシー勾配を計算し,情報的角度選択とスキャン終了のための適応的ポリシーの開発を可能にする手法を提案する。
さらに,本手法の文脈におけるシミュレーションと実世界の応用のギャップについて検討した。
実世界のデータに適用した場合の信頼性を示す。
このアプローチによりCT操作の柔軟性が向上し,工業環境におけるスパース角度トモグラフィの適用性も向上する。
関連論文リスト
- GraphCompNet: A Position-Aware Model for Predicting and Compensating Shape Deviations in 3D Printing [46.76421610124468]
本稿では、添加性製造(AM)における形状偏差のモデル化と補償のためのデータ駆動アルゴリズムを提案する。
機械学習(ML)の最近の進歩により補償精度は向上しているが、複雑な地形をまたいで一般化し、位置依存的な変化に適応する問題は残っている。
本稿では,グラフベースニューラルネットワークとGAN(Generative Adversarial Network)にインスパイアされたトレーニングプロセスを組み合わせた計算フレームワークであるGraphCompNetを用いて,粉体層融合プロセスの新しいアプローチを提案する。
論文 参考訳(メタデータ) (2025-02-11T20:22:00Z) - Preventing Local Pitfalls in Vector Quantization via Optimal Transport [77.15924044466976]
我々はシンクホーンアルゴリズムを用いて最適な輸送問題を最適化する新しいベクトル量子化法であるOptVQを紹介する。
画像再構成タスクの実験では,OptVQが100%のコードブック利用を実現し,現在最先端のVQNを超越していることが示された。
論文 参考訳(メタデータ) (2024-12-19T18:58:14Z) - Reinforcement Learning Approach to Optimizing Profilometric Sensor Trajectories for Surface Inspection [0.0]
製造における高精度表面欠陥検出は品質管理の確保に不可欠である。
レーザー三角プロファイリングセンサーがこのプロセスの鍵となる。
本稿では,プロファイロメータセンサの検査軌道を最適化するための新しい手法を提案する。
論文 参考訳(メタデータ) (2024-09-05T11:20:12Z) - Track Everything Everywhere Fast and Robustly [46.362962852140015]
ビデオ中の任意のピクセルを効率的に追跡するための新しいテスト時間最適化手法を提案する。
本稿では,関数表現を局所的な時空間特徴グリッドに分解する,新しい非可逆変形ネットワークCaDeX++を提案する。
本実験は,SoTA最適化手法であるOmniMotion上でのトレーニング速度( textbf10 倍の速度),堅牢性,精度を著しく向上したことを示す。
論文 参考訳(メタデータ) (2024-03-26T17:58:22Z) - Self-STORM: Deep Unrolled Self-Supervised Learning for Super-Resolution Microscopy [55.2480439325792]
我々は、シーケンス固有のモデルベースのオートエンコーダをトレーニングすることで、そのようなデータの必要性を軽減する、深層無学習の自己教師付き学習を導入する。
提案手法は, 監視対象の性能を超過する。
論文 参考訳(メタデータ) (2024-03-25T17:40:32Z) - Integrating Efficient Optimal Transport and Functional Maps For
Unsupervised Shape Correspondence Learning [43.6925865296259]
本稿では、関数マップ正規化器とSWDから派生した新しいOTに基づく損失を統合する教師なし形状マッチングフレームワークを提案する。
また、エントロピー正則化OTを用いた適応的精細化プロセスを導入し、正確な点対点対応のための特徴アライメントをさらに強化する。
本手法は,非剛性形状マッチングにおいて,ほぼ等尺性および非等尺性シナリオを含む優れた性能を示す。
論文 参考訳(メタデータ) (2024-03-04T07:21:07Z) - Integer Optimization of CT Trajectories using a Discrete Data
Completeness Formulation [3.924235219960689]
X線CTは、幅広い医療・産業用途のために3次元構造をデジタル化する上で重要な役割を果たしている。
従来のCTシステムは、しばしば標準的な円形およびヘリカルスキャンの軌跡に依存しており、大きな物体、複雑な構造、資源の制約を含む挑戦的なシナリオには最適ではないかもしれない。
我々は、対象物に関する任意の視点から投影を得る柔軟性を提供する双対ロボットCTシステムの可能性を探っている。
論文 参考訳(メタデータ) (2024-01-29T10:38:58Z) - VoxNeRF: Bridging Voxel Representation and Neural Radiance Fields for Enhanced Indoor View Synthesis [73.50359502037232]
VoxNeRFは、ニューラル室内再構成と新しいビュー合成の質と効率を高めるための新しいアプローチである。
本稿では,最も関連性の高い領域に計算資源を割り当てる効率的なボクセル誘導サンプリング手法を提案する。
私たちのアプローチは、ScanNetとScanNet++に関する広範な実験で検証されています。
論文 参考訳(メタデータ) (2023-11-09T11:32:49Z) - DiffSkill: Skill Abstraction from Differentiable Physics for Deformable
Object Manipulations with Tools [96.38972082580294]
DiffSkillは、変形可能なオブジェクト操作タスクを解決するために、スキル抽象化に微分可能な物理シミュレータを使用する新しいフレームワークである。
特に、勾配に基づくシミュレーターから個々のツールを用いて、まず短距離のスキルを得る。
次に、RGBD画像を入力として取り込む実演軌跡から、ニューラルネットワークの抽象体を学習する。
論文 参考訳(メタデータ) (2022-03-31T17:59:38Z) - An Adaptive Framework for Learning Unsupervised Depth Completion [59.17364202590475]
カラー画像から高密度深度マップとそれに伴うスパース深度測定を推定する手法を提案する。
正規化とコビジュアライゼーションは、モデルの適合度とデータによって関連付けられており、単一のフレームワークに統合可能であることを示す。
論文 参考訳(メタデータ) (2021-06-06T02:27:55Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
伝播距離、位置誤差、部分的コヒーレンスにおける粗いパラメトリゼーションは、しばしば実験の生存性を脅かす。
最新のDeep Learningフレームワークは、セットアップの不整合を自律的に補正するために使用され、ポチコグラフィーの再構築の質が向上する。
我々は,elettra シンクロトロン施設のツインミックビームラインで取得した合成データセットと実データの両方でシステムをテストした。
論文 参考訳(メタデータ) (2021-05-18T10:15:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。