From Head to Tail: Towards Balanced Representation in Large Vision-Language Models through Adaptive Data Calibration
- URL: http://arxiv.org/abs/2503.12821v2
- Date: Tue, 18 Mar 2025 06:02:39 GMT
- Title: From Head to Tail: Towards Balanced Representation in Large Vision-Language Models through Adaptive Data Calibration
- Authors: Mingyang Song, Xiaoye Qu, Jiawei Zhou, Yu Cheng,
- Abstract summary: Large Vision-Language Models (LVLMs) have achieved significant progress in combining visual comprehension with language generation.<n>Despite this success, the training data of LVLMs still suffers from Long-Tail (LT) problems, where the data distribution is highly imbalanced.<n>We propose an $textbfA$daptive $textbfD$ata $textbfR$ebalancing, while in the DS stage, we leverage Denoising Diffusion Probabilistic Models (DDPMs) and scarce images to supplement underrepresented portions.
- Score: 30.781359402734036
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Vision-Language Models (LVLMs) have achieved significant progress in combining visual comprehension with language generation. Despite this success, the training data of LVLMs still suffers from Long-Tail (LT) problems, where the data distribution is highly imbalanced. Previous works have mainly focused on traditional VLM architectures, i.e., CLIP or ViT, and specific tasks such as recognition and classification. Nevertheless, the exploration of LVLM (e.g. LLaVA) and more general tasks (e.g. Visual Question Answering and Visual Reasoning) remains under-explored. In this paper, we first conduct an in-depth analysis of the LT issues in LVLMs and identify two core causes: the overrepresentation of head concepts and the underrepresentation of tail concepts. Based on the above observation, we propose an $\textbf{A}$daptive $\textbf{D}$ata $\textbf{R}$efinement Framework ($\textbf{ADR}$), which consists of two stages: $\textbf{D}$ata $\textbf{R}$ebalancing ($\textbf{DR}$) and $\textbf{D}$ata $\textbf{S}$ynthesis ($\textbf{DS}$). In the DR stage, we adaptively rebalance the redundant data based on entity distributions, while in the DS stage, we leverage Denoising Diffusion Probabilistic Models (DDPMs) and scarce images to supplement underrepresented portions. Through comprehensive evaluations across eleven benchmarks, our proposed ADR effectively mitigates the long-tail problem in the training data, improving the average performance of LLaVA 1.5 relatively by 4.36%, without increasing the training data volume.
Related papers
- TL;DR: Too Long, Do Re-weighting for Efficient LLM Reasoning Compression [55.37723860832064]
We propose a dynamic ratio-based training pipeline that does not rely on sophisticated data annotations.<n>We validate our approach across models on DeepSeek-R1-Distill-7B and DeepSeek-R1-Distill-14B and on a diverse set of benchmarks with varying difficulty levels.
arXiv Detail & Related papers (2025-06-03T09:23:41Z) - Simple Semi-supervised Knowledge Distillation from Vision-Language Models via $\mathbf{\ exttt{D}}$ual-$\mathbf{\ exttt{H}}$ead $\mathbf{\ exttt{O}}$ptimization [49.2338910653152]
Vision-constrained models (VLMs) have achieved remarkable success across diverse tasks by leveraging rich textual information with minimal labeled data.<n> Knowledge distillation (KD) offers a well-established solution to this problem; however, recent KD approaches from VLMs often involve multi-stage training or additional tuning.<n>We propose $mathbftextttDHO$ -- a simple yet effective KD framework that transfers knowledge from VLMs to compact, task-specific models in semi-language settings.
arXiv Detail & Related papers (2025-05-12T15:39:51Z) - S$^2$R: Teaching LLMs to Self-verify and Self-correct via Reinforcement Learning [51.84977135926156]
We introduce S$2$R, an efficient framework that enhances LLM reasoning by teaching models to self-verify and self-correct during inference.<n>Our results demonstrate that Qwen2.5-math-7B achieves an accuracy improvement from 51.0% to 81.6%, outperforming models trained on an equivalent amount of long-CoT distilled data.
arXiv Detail & Related papers (2025-02-18T13:40:22Z) - MM-RLHF: The Next Step Forward in Multimodal LLM Alignment [59.536850459059856]
We introduce MM-RLHF, a dataset containing $mathbf120k$ fine-grained, human-annotated preference comparison pairs.
We propose several key innovations to improve the quality of reward models and the efficiency of alignment algorithms.
Our approach is rigorously evaluated across $mathbf10$ distinct dimensions and $mathbf27$ benchmarks.
arXiv Detail & Related papers (2025-02-14T18:59:51Z) - LMGT: Optimizing Exploration-Exploitation Balance in Reinforcement Learning through Language Model Guided Trade-offs [27.014415210732103]
We introduce textbfLanguage textbfModel textbfGuided textbfTrade-offs (i.e., textbfLMGT), a novel, sample-efficient framework for Reinforcement Learning.
arXiv Detail & Related papers (2024-09-07T07:40:43Z) - VLKEB: A Large Vision-Language Model Knowledge Editing Benchmark [53.091690659399234]
knowledge editing on large language models (LLMs) has received considerable attention.
The existing LVLM editing benchmark, which comprises three metrics (Reliability, Locality, and Generality), falls short in the quality of synthesized evaluation images.
We employ more reliable data collection methods to construct a new Large $textbfV$ision-$textbfL$anguage Model.
arXiv Detail & Related papers (2024-03-12T06:16:33Z) - Unleashing the Power of Pre-trained Language Models for Offline Reinforcement Learning [50.9692060692705]
This paper introduces $textbfLanguage Models for $textbfMo$tion Control ($textbfLaMo$), a general framework based on Decision Transformers for offline RL.<n>Our framework highlights four crucial components:.<n>Initializing Decision Transformers with sequentially pre-trained LMs, (2) employing the LoRA fine-tuning method,.<n>In particular, our method demonstrates superior performance in scenarios with limited data samples.
arXiv Detail & Related papers (2023-10-31T16:24:17Z) - Pretraining task diversity and the emergence of non-Bayesian in-context
learning for regression [31.950737940558984]
Pretrained transformers exhibit the remarkable ability of in-context learning (ICL)
Can ICL solve fundamentally $textitnew$ tasks that are very different from those seen during pretraining?
arXiv Detail & Related papers (2023-06-26T21:05:20Z) - Inverse Scaling: When Bigger Isn't Better [80.42834197416444]
Large language models (LMs) show predictable improvements to overall loss with increased scale.
We present evidence for the claim that LMs may show inverse scaling, or worse task performance with increased scale.
arXiv Detail & Related papers (2023-06-15T20:11:23Z) - SPDF: Sparse Pre-training and Dense Fine-tuning for Large Language
Models [4.114555639014612]
We show the benefits of using unstructured weight sparsity to train only a subset of weights during pre-training.
We demonstrate that we can induce up to 75% sparsity into a 1.3B parameter GPT-3 XL model resulting in a 2.5x reduction in pre-training FLOPs.
arXiv Detail & Related papers (2023-03-18T17:56:01Z) - Training \beta-VAE by Aggregating a Learned Gaussian Posterior with a
Decoupled Decoder [0.553073476964056]
Current practices in VAE training often result in a trade-off between the reconstruction fidelity and the continuity$/$disentanglement of the latent space.
We present intuitions and a careful analysis of the antagonistic mechanism of the two losses, and propose a simple yet effective two-stage method for training a VAE.
We evaluate the method using a medical dataset intended for 3D skull reconstruction and shape completion, and the results indicate promising generative capabilities of the VAE trained using the proposed method.
arXiv Detail & Related papers (2022-09-29T13:49:57Z) - Unsupervised Vision-and-Language Pre-training via Retrieval-based
Multi-Granular Alignment [66.77841319057299]
We propose a novel unsupervised Vision-and-Language pre-training curriculum for non-parallel texts and images.
We first construct a weakly aligned image-text corpus via a retrieval-based approach, then apply a set of multi-granular alignment pre-training tasks.
A comprehensive ablation study shows each granularity is helpful to learn a stronger pre-trained model.
arXiv Detail & Related papers (2022-03-01T05:34:01Z) - Self-Supervised Pre-Training for Transformer-Based Person
Re-Identification [54.55281692768765]
Transformer-based supervised pre-training achieves great performance in person re-identification (ReID)
Due to the domain gap between ImageNet and ReID datasets, it usually needs a larger pre-training dataset to boost the performance.
This work aims to mitigate the gap between the pre-training and ReID datasets from the perspective of data and model structure.
arXiv Detail & Related papers (2021-11-23T18:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.