論文の概要: MM-Spatial: Exploring 3D Spatial Understanding in Multimodal LLMs
- arxiv url: http://arxiv.org/abs/2503.13111v2
- Date: Mon, 08 Sep 2025 09:39:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-09 14:07:02.968308
- Title: MM-Spatial: Exploring 3D Spatial Understanding in Multimodal LLMs
- Title(参考訳): MM空間:マルチモーダルLLMにおける3次元空間理解の探索
- Authors: Erik Daxberger, Nina Wenzel, David Griffiths, Haiming Gang, Justin Lazarow, Gefen Kohavi, Kai Kang, Marcin Eichner, Yinfei Yang, Afshin Dehghan, Peter Grasch,
- Abstract要約: MLLM(Multimodal large language model)は、2次元の視覚的理解に優れるが、3次元空間を推論する能力には限界がある。
本研究では,1)新しい教師付き微調整データセットの導入,2)屋内シーンに焦点を当てた新しい評価ベンチマークを導入するために,オープンセットアノテーションを用いた大規模高品質3Dシーンデータを活用する。
- 参考スコア(独自算出の注目度): 19.70116190496693
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal large language models (MLLMs) excel at 2D visual understanding but remain limited in their ability to reason about 3D space. In this work, we leverage large-scale high-quality 3D scene data with open-set annotations to introduce 1) a novel supervised fine-tuning dataset and 2) a new evaluation benchmark, focused on indoor scenes. Our Cubify Anything VQA (CA-VQA) data covers diverse spatial tasks including spatial relationship prediction, metric size and distance estimation, and 3D grounding. We show that CA-VQA enables us to train MM-Spatial, a strong generalist MLLM that also achieves state-of-the-art performance on 3D spatial understanding benchmarks, including our own. We show how incorporating metric depth and multi-view inputs (provided in CA-VQA) can further improve 3D understanding, and demonstrate that data alone allows our model to achieve depth perception capabilities comparable to dedicated monocular depth estimation models.
- Abstract(参考訳): MLLM(Multimodal large language model)は、2次元の視覚的理解に優れるが、3次元空間を推論する能力には限界がある。
本研究では,オープンセットアノテーションを用いた大規模高品質3Dシーンデータを活用して紹介する。
1)教師付き微調整データセットと新規
2)室内シーンに焦点を当てた新しい評価ベンチマーク。
我々のCubeify Anything VQA(CA-VQA)データは,空間的関係予測や距離推定,3次元接地など,多様な空間的タスクを網羅している。
CA-VQAは3次元空間理解ベンチマークにおける最先端性能を達成できる強力な汎用MLLMであるMM-Spatialのトレーニングを可能にする。
メトリディープインプットとマルチビューインプット(CA-VQAで提供される)を組み込むことで3次元理解がさらに向上することを示すとともに,データのみにより,専用単眼深度推定モデルに匹敵する深度知覚能力が得られることを示す。
関連論文リスト
- Spatial-MLLM: Boosting MLLM Capabilities in Visual-based Spatial Intelligence [13.168559963356952]
純粋に2次元の観察から空間的推論を行う新しいフレームワークであるSpatial-MLLMを提案する。
我々の重要な洞察は、フィードフォワード視覚幾何学基礎モデルに先立って、強い構造を解き放つことである。
コネクタは、両方の機能を統合された視覚トークンに統合し、空間的理解を強化する。
論文 参考訳(メタデータ) (2025-05-29T17:59:04Z) - VLM-3R: Vision-Language Models Augmented with Instruction-Aligned 3D Reconstruction [86.82819259860186]
本稿では,視覚言語モデル(VLM)のための統合フレームワークであるVLM-3Rについて紹介する。
VLM-3Rは、空間的理解を表す暗黙の3Dトークンを導出する幾何学エンコーダを用いて、モノクロビデオフレームを処理する。
論文 参考訳(メタデータ) (2025-05-26T17:56:30Z) - Extending Large Vision-Language Model for Diverse Interactive Tasks in Autonomous Driving [45.82124136705798]
DriveMonkeyは、大きなビジュアル言語モデルと空間プロセッサをシームレスに統合するフレームワークである。
我々の実験によると、DriveMonkeyは一般的なLVLMよりも優れており、特に3D視覚グラウンドタスクにおいて9.86%の顕著な改善が達成されている。
論文 参考訳(メタデータ) (2025-05-13T16:36:51Z) - Empowering Large Language Models with 3D Situation Awareness [84.12071023036636]
3Dと2Dの主な違いは、3Dシーンにおける自我中心のオブザーバーの状況が変化し、異なる記述をもたらすことである。
本研究では,データ収集時の走査軌道を利用して状況認識データセットを自動的に生成する手法を提案する。
本研究では,観測者の視点の位置と方向を明示的に予測する状況接地モジュールを導入し,LLMが3次元シーンで状況記述をグラウンド化できるようにする。
論文 参考訳(メタデータ) (2025-03-29T09:34:16Z) - From Flatland to Space: Teaching Vision-Language Models to Perceive and Reason in 3D [32.547597353581594]
本研究では,3次元地上構造を持つシーンデータ上に構築された新しい2次元空間データ生成およびアノテーションパイプラインを提案する。
複数の公開データセットにまたがって数千のシーンから生成される大規模データセットであるSPAR-7Mを構築した。
さらに,空間能力をより包括的に評価するためのベンチマークであるSPAR-Benchを紹介する。
論文 参考訳(メタデータ) (2025-03-29T04:51:50Z) - 3UR-LLM: An End-to-End Multimodal Large Language Model for 3D Scene Understanding [49.15555885075644]
オープンソースの2D MLLMとLCMをベースとしたパイプラインを開発し,高品質な3Dテキストペアを生成する。
本稿では,3次元シーンの正確な解釈を目的としたエンドツーエンド3次元MLLMである3UR-LLMモデルを紹介する。
論文 参考訳(メタデータ) (2025-01-14T03:50:23Z) - Articulate3D: Holistic Understanding of 3D Scenes as Universal Scene Description [56.69740649781989]
3Dシーン理解は、コンピュータビジョンにおける長年の課題であり、混合現実、ウェアラブルコンピューティング、そして具体化されたAIを実現する上で重要な要素である。
室内280のシーンに高品質な手動アノテーションを付加した専門的な3DデータセットであるArticulate3Dを紹介する。
我々はまた,部分分割を同時に予測できる新しい統一フレームワークUSDNetと,オブジェクトの動作属性の完全な仕様を提示する。
論文 参考訳(メタデータ) (2024-12-02T11:33:55Z) - Video-3D LLM: Learning Position-Aware Video Representation for 3D Scene Understanding [19.382210260928776]
Video-3D LLMは3Dシーンをダイナミックビデオとして扱い、3D位置エンコーディングをこれらの表現に組み込む。
本モデルは,複数の3次元シーン理解ベンチマークにおいて,最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-11-30T14:28:53Z) - LLMI3D: MLLM-based 3D Perception from a Single 2D Image [77.13869413871028]
マルチモーダルな大言語モデル(MLLM)は、一般的な能力では優れているが、3Dタスクでは性能が劣る。
本稿では,3次元局所空間物体認識の弱さ,テキストに基づく幾何学的数値出力の低さ,カメラ焦点変動の処理能力の低下に対する解決策を提案する。
我々は,事前学習したMLLMに対してパラメータ効率の良い微調整を採用し,強力な3次元知覚MLLMであるLLMI3Dを開発した。
論文 参考訳(メタデータ) (2024-08-14T10:00:16Z) - Coarse Correspondences Boost Spatial-Temporal Reasoning in Multimodal Language Model [51.83436609094658]
本稿では,2次元画像を入力として,MLLMの時空間推論を強化する軽量な手法である粗対応を導入する。
本手法は,映像のフレーム間や異なる視点における主物体の対応性を特定するために,軽量な追跡モデルを用いている。
この単純なトレーニングフリーアプローチは、4つのベンチマークでGPT4-V/Oに一定の利得をもたらすことを実証する。
論文 参考訳(メタデータ) (2024-08-01T17:57:12Z) - MMScan: A Multi-Modal 3D Scene Dataset with Hierarchical Grounded Language Annotations [55.022519020409405]
本稿では,マルチモーダルな3Dシーンデータセットと階層型言語アノテーションを用いたベンチマーク,MMScanを構築した。
結果として得られたマルチモーダルな3Dデータセットは、109kオブジェクトと7.7kリージョン上の1.4Mメタアノテーション付きキャプションと、3Dビジュアルグラウンドと質問応答ベンチマークのための3.04M以上の多様なサンプルを含んでいる。
論文 参考訳(メタデータ) (2024-06-13T17:59:30Z) - Language-Image Models with 3D Understanding [59.499585515469974]
LV3Dと呼ばれる2Dおよび3Dのための大規模事前学習データセットを開発した。
次に,新しいMLLMであるCube-LLMを導入し,LV3Dで事前学習する。
純粋なデータスケーリングは、3D特有のアーキテクチャ設計やトレーニング目的を使わずに、強力な3D知覚能力を実現することを示す。
論文 参考訳(メタデータ) (2024-05-06T17:57:27Z) - SpatialVLM: Endowing Vision-Language Models with Spatial Reasoning
Capabilities [59.39858959066982]
空間的関係についての理解と推論は、視覚質問応答(VQA)とロボット工学の基本的な能力である。
我々は,1000万枚の実画像に対して,最大20億個のVQAサンプルをスケール可能な3次元空間VQAデータ自動生成フレームワークを開発した。
このようなデータに基づいてVLMを訓練することにより、定性的空間的VQAと定量的空間的VQAの両方において、その能力を大幅に向上する。
論文 参考訳(メタデータ) (2024-01-22T18:01:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。