論文の概要: Goal2Story: A Multi-Agent Fleet based on Privately Enabled sLLMs for Impacting Mapping on Requirements Elicitation
- arxiv url: http://arxiv.org/abs/2503.13279v1
- Date: Mon, 17 Mar 2025 15:31:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 16:00:29.348260
- Title: Goal2Story: A Multi-Agent Fleet based on Privately Enabled sLLMs for Impacting Mapping on Requirements Elicitation
- Title(参考訳): Goal2Story: 不要なsLLMをベースとしたマルチエージェントフリート
- Authors: Xinkai Zou, Yan Liu, Xiongbo Shi, Chen Yang,
- Abstract要約: Goal2Storyは、Impact Mapping(IM)フレームワークを採用したマルチエージェントのフリートであり、単にゴール駆動REにコスト効率のよいsLLMを使用するだけである。
StorySeekデータセットには、対応する目標とプロジェクトコンテキスト情報を備えた1,000以上のユーザストーリ(US)が含まれている。
評価のために,FHR(Factality Hit Rate)とQuACE(Quality And Consistency Evaluation)の2つの指標を提案した。
- 参考スコア(独自算出の注目度): 6.547589336272875
- License:
- Abstract: As requirements drift with rapid iterations, agile development becomes the dominant paradigm. Goal-driven Requirements Elicitation (RE) is a pivotal yet challenging task in agile project development due to its heavy tangling with adaptive planning and efficient collaboration. Recently, AI agents have shown promising ability in supporting requirements analysis by saving significant time and effort for stakeholders. However, current research mainly focuses on functional RE, and research works have not been reported bridging the long journey from goal to user stories. Moreover, considering the cost of LLM facilities and the need for data and idea protection, privately hosted small-sized LLM should be further utilized in RE. To address these challenges, we propose Goal2Story, a multi-agent fleet that adopts the Impact Mapping (IM) framework while merely using cost-effective sLLMs for goal-driven RE. Moreover, we introduce a StorySeek dataset that contains over 1,000 user stories (USs) with corresponding goals and project context information, as well as the semi-automatic dataset construction method. For evaluation, we proposed two metrics: Factuality Hit Rate (FHR) to measure consistency between the generated USs with the dataset and Quality And Consistency Evaluation (QuACE) to evaluate the quality of the generated USs. Experimental results demonstrate that Goal2Story outperforms the baseline performance of the Super-Agent adopting powerful LLMs, while also showcasing the performance improvements in key metrics brought by CoT and Agent Profile to Goal2Story, as well as its exploration in identifying latent needs.
- Abstract(参考訳): 要求が急激なイテレーションで漂うにつれて、アジャイル開発が支配的なパラダイムになります。
目標駆動の要件 引用(RE)は、適応的な計画と効率的なコラボレーションとの密接な関係から、アジャイルプロジェクト開発において重要な課題である。
最近、AIエージェントは、ステークホルダーにかなりの時間と労力を節約し、要求分析をサポートする有望な能力を示した。
しかし、現在の研究は主に機能的REに焦点を当てており、目標からユーザストーリーへの長い旅を橋渡しする研究は報告されていない。
また,LLM施設の費用とデータ・アイデア保護の必要性を考慮すると,私営の小型LCMをREで活用すべきである。
これらの課題に対処するために、Goal2Storyを提案する。Goal2Storyは、Impact Mapping(IM)フレームワークを採用するマルチエージェントのフリートで、単にゴール駆動型REにコスト効率のよいsLLMを使用するだけである。
さらに,1000以上のユーザストーリ(US)を対象とするStorySeekデータセットと,それに対応するプロジェクトコンテキスト情報と,半自動データセット構築手法を導入する。
評価のために,FHR(Factality Hit Rate)とQuACE(Quality And Consistency Evaluation)の2つの指標を提案した。
実験の結果、Goal2Storyは強力なLLMを採用したSuper-Agentのベースライン性能よりも優れており、CoTやAgent ProfileからGoal2Storyにもたらす主要なメトリクスのパフォーマンス改善や、潜伏ニーズの特定における探索が示されている。
関連論文リスト
- Adaptive Pruning for Large Language Models with Structural Importance Awareness [66.2690963378878]
大規模言語モデル(LLM)は言語理解と生成能力を大幅に改善した。
LLMは、高い計算およびストレージリソース要求のため、リソース制約のあるエッジデバイスにデプロイするのは難しい。
モデル性能を維持しつつ,計算コストとメモリコストを大幅に削減する構造的適応型プルーニング(SAAP)を提案する。
論文 参考訳(メタデータ) (2024-12-19T18:08:04Z) - Are Your LLMs Capable of Stable Reasoning? [38.03049704515947]
大規模言語モデル(LLM)は複雑な推論タスクにおいて顕著な進歩を示している。
しかし、ベンチマークパフォーマンスと実世界のアプリケーションの間には大きな違いがある。
G-Pass@kはモデルの性能を連続的に評価する新しい評価指標である。
本稿では,挑戦的,現代数学的な問題からなる動的ベンチマークであるLiveMathBenchを紹介する。
論文 参考訳(メタデータ) (2024-12-17T18:12:47Z) - MAG-V: A Multi-Agent Framework for Synthetic Data Generation and Verification [5.666070277424383]
MAG-Vは、顧客のクエリを模倣する質問のデータセットを生成するフレームワークである。
我々の合成データは、実際の顧客クエリにおけるエージェントのパフォーマンスを向上させることができる。
論文 参考訳(メタデータ) (2024-11-28T19:36:11Z) - Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning [71.2981957820888]
本稿では,データセット間のデータ品質向上を自動化する新しいStar-Agentsフレームワークを提案する。
このフレームワークは最初,複数のLDMエージェントを用いた多様なインストラクションデータを生成する。
生成したデータは、難易度と品質の両方を評価する二重モデル法を用いて厳密な評価を行う。
論文 参考訳(メタデータ) (2024-11-21T02:30:53Z) - Fact, Fetch, and Reason: A Unified Evaluation of Retrieval-Augmented Generation [19.312330150540912]
新たなアプリケーションは、Large Language Models(LLMs)を使用して、検索強化世代(RAG)機能を強化している。
FRAMESは,LLMが現実的な応答を提供する能力をテストするために設計された高品質な評価データセットである。
本稿では,最先端のLLMでもこの課題に対処し,0.40の精度で検索を行なわないことを示す。
論文 参考訳(メタデータ) (2024-09-19T17:52:07Z) - MIRAI: Evaluating LLM Agents for Event Forecasting [22.524158637977]
我々は,国際イベントの文脈において,LLMエージェントを時間予測器として評価するための新しいベンチマークであるMIRAIを紹介する。
本ベンチマークでは,歴史的,構造化されたイベントやテキストニュース記事の広範なデータベースにアクセスするためのツールを備えたエージェント環境を特徴とする。
まとめると、MIRAIはエージェントの能力を3つの次元で総合的に評価する。1) 大規模グローバルデータベースから重要な情報を自律的にソースし統合すること、2) ドメイン固有のAPIとツール使用のためのライブラリを使ってコードを書くこと、3) 多様なフォーマットや時間から歴史的知識を共同で引き継ぎ、将来的な事象を正確に予測すること。
論文 参考訳(メタデータ) (2024-07-01T12:22:46Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
長文言語モデル(LCLM)は、従来、検索システムやデータベースといった外部ツールに依存していたタスクへのアプローチに革命をもたらす可能性がある。
実世界のタスクのベンチマークであるLOFTを導入し、文脈内検索と推論においてLCLMの性能を評価するために設計された数百万のトークンを出力する。
以上の結果からLCLMは,これらのタスクを明示的に訓練したことがないにも関わらず,最先端の検索システムやRAGシステムと競合する驚くべき能力を示した。
論文 参考訳(メタデータ) (2024-06-19T00:28:58Z) - DCA-Bench: A Benchmark for Dataset Curation Agents [9.60250892491588]
隠れたデータセットの品質問題を検知する大規模言語モデルの能力を測定するために,データセットキュレーションエージェントベンチマークであるDCA-Benchを提案する。
具体的には、テストベッドとして8つのオープンデータセットプラットフォームから、さまざまな実世界のデータセット品質の問題を収集します。
提案したベンチマークは、単に問題解決を行うのではなく、問題発見におけるLLMの能力を測定するためのテストベッドとしても機能する。
論文 参考訳(メタデータ) (2024-06-11T14:02:23Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
本稿では,多エージェント協調のための新しいフレームワークを提案する。これは,効率的な自己調整のための強化アドバンテージフィードバック(Reinforced Advantage feedback, ReAd)を導入する。
強化学習における重み付き回帰を多エージェントシステムに拡張して理論的解析を行う。
Over-AIと難解なRoCoBenchの実験は、ReAdが成功率のベースラインを超え、エージェントの相互作用ステップを著しく減少させることを示している。
論文 参考訳(メタデータ) (2024-05-23T08:33:19Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
オープン情報抽出(OIE)タスクは、構造化されていないテキストから構造化された事実を抽出することを目的としている。
一般的なタスク解決手段としてChatGPTのような大きな言語モデル(LLM)の可能性にもかかわらず、OIEタスクの最先端(教師付き)メソッドは遅れている。
論文 参考訳(メタデータ) (2023-09-07T01:35:24Z) - Entity-Graph Enhanced Cross-Modal Pretraining for Instance-level Product
Retrieval [152.3504607706575]
本研究の目的は, 細粒度製品カテゴリを対象とした, 弱制御型マルチモーダル・インスタンスレベルの製品検索である。
まず、Product1Mデータセットをコントリビュートし、2つの実際のインスタンスレベルの検索タスクを定義します。
我々は、マルチモーダルデータから重要な概念情報を組み込むことができるより効果的なクロスモーダルモデルを訓練するために活用する。
論文 参考訳(メタデータ) (2022-06-17T15:40:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。