論文の概要: Infinite Mobility: Scalable High-Fidelity Synthesis of Articulated Objects via Procedural Generation
- arxiv url: http://arxiv.org/abs/2503.13424v1
- Date: Mon, 17 Mar 2025 17:53:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 12:29:59.996767
- Title: Infinite Mobility: Scalable High-Fidelity Synthesis of Articulated Objects via Procedural Generation
- Title(参考訳): 無限運動量:手続き生成による人工物体のスケーラブルな高忠実合成
- Authors: Xinyu Lian, Zichao Yu, Ruiming Liang, Yitong Wang, Li Ray Luo, Kaixu Chen, Yuanzhen Zhou, Qihong Tang, Xudong Xu, Zhaoyang Lyu, Bo Dai, Jiangmiao Pang,
- Abstract要約: Infinite Mobilityは、手続き生成による高忠実度調音オブジェクトの新しい手法である。
我々の合成データは、生成モデルのトレーニングデータとして利用でき、次のステップのスケールアップを可能にします。
- 参考スコア(独自算出の注目度): 22.500531114325092
- License:
- Abstract: Large-scale articulated objects with high quality are desperately needed for multiple tasks related to embodied AI. Most existing methods for creating articulated objects are either data-driven or simulation based, which are limited by the scale and quality of the training data or the fidelity and heavy labour of the simulation. In this paper, we propose Infinite Mobility, a novel method for synthesizing high-fidelity articulated objects through procedural generation. User study and quantitative evaluation demonstrate that our method can produce results that excel current state-of-the-art methods and are comparable to human-annotated datasets in both physics property and mesh quality. Furthermore, we show that our synthetic data can be used as training data for generative models, enabling next-step scaling up. Code is available at https://github.com/Intern-Nexus/Infinite-Mobility
- Abstract(参考訳): エンボディドAIに関連する複数のタスクには、高品質な大規模調音オブジェクトが必死に必要である。
音声オブジェクトを作成するほとんどの既存の方法は、データ駆動またはシミュレーションベースであり、トレーニングデータのスケールと品質、あるいはシミュレーションの忠実さと重労働によって制限される。
本稿では,高忠実度調音オブジェクトを手続き生成により合成する新しい手法であるInfinite Mobilityを提案する。
ユーザスタディと定量的評価により,本手法は現在の最先端の手法を抜粋し,物理特性とメッシュ品質の両面において人間の注釈付きデータセットに匹敵する結果が得られることが示された。
さらに, 合成データを生成モデルのトレーニングデータとして利用することで, 次段階のスケールアップが可能となることを示す。
コードはhttps://github.com/Intern-Nexus/Infinite-Mobilityで入手できる。
関連論文リスト
- UnitCoder: Scalable Iterative Code Synthesis with Unit Test Guidance [65.01483640267885]
大きな言語モデル(LLM)は、様々なタスクにおいて顕著な能力を示してきたが、コード生成は依然として大きな課題である。
私たちは、モデル生成ユニットテストを活用してコード生成プロセスのガイドと検証を行う、システマティックパイプラインであるUnitCoderを紹介します。
我々の研究は、モデル生成単体テストを利用して、事前学習コーパスから高品質なコードデータの合成を誘導するスケーラブルなアプローチを提案する。
論文 参考訳(メタデータ) (2025-02-17T05:37:02Z) - Multi-Armed Bandit Approach for Optimizing Training on Synthetic Data [7.603659241572307]
動的ユーザビリティ指標と組み合わせた UCB ベースのトレーニング手法を提案する。
提案手法は,合成画像と対応する実・合成データセットからの低レベル・高レベル情報を統合する。
提案手法は, ユーザビリティに基づいて, 合成画像のランク付けに有効な方法であることを示す。
論文 参考訳(メタデータ) (2024-12-06T23:36:36Z) - MBDS: A Multi-Body Dynamics Simulation Dataset for Graph Networks Simulators [4.5353840616537555]
物理現象をモデル化する主要な手法として,グラフネットワークシミュレータ (GNS) が登場している。
我々は,1D,2D,3Dシーンを含む高品質な物理シミュレーションデータセットを構築した。
私たちのデータセットの重要な特徴は、物理世界のより現実的なシミュレーションを促進する、正確な多体ダイナミクスを取り入れることである。
論文 参考訳(メタデータ) (2024-10-04T03:03:06Z) - Improving Object Detector Training on Synthetic Data by Starting With a Strong Baseline Methodology [0.14980193397844666]
本稿では,合成データを用いた学習における事前学習対象検出器の性能向上手法を提案する。
提案手法は,実画像の事前学習から得られた有用な特徴を忘れずに,合成データから有能な情報を抽出することに焦点を当てる。
論文 参考訳(メタデータ) (2024-05-30T08:31:01Z) - Value function estimation using conditional diffusion models for control [62.27184818047923]
拡散値関数(DVF)と呼ばれる単純なアルゴリズムを提案する。
拡散モデルを用いて環境-ロボット相互作用の連成多段階モデルを学ぶ。
本稿では,DVFを用いて複数のコントローラの状態を効率よく把握する方法を示す。
論文 参考訳(メタデータ) (2023-06-09T18:40:55Z) - Learning to Simulate Daily Activities via Modeling Dynamic Human Needs [24.792813473159505]
生成的逆転模倣学習に基づく知識駆動型シミュレーションフレームワークを提案する。
我々の中核となる考え方は、シミュレーションモデルにおける活動生成を駆動する基盤となるメカニズムとして、人間の要求の進化をモデル化することである。
我々のフレームワークは、データの忠実さと実用性の観点から、最先端のベースラインよりも優れています。
論文 参考訳(メタデータ) (2023-02-09T12:30:55Z) - Towards Precise Model-free Robotic Grasping with Sim-to-Real Transfer
Learning [11.470950882435927]
本稿では,ロボットの把持ネットワークについて述べる。
物理ロボット実験では,1つの既知の物体と,90.91%の成功率を持つ新しい複合形状の家庭用物体を把握した。
提案した把握フレームワークは、既知の物体と未知の物体の両方において、最先端の2つの手法より優れていた。
論文 参考訳(メタデータ) (2023-01-28T16:57:19Z) - Is synthetic data from generative models ready for image recognition? [69.42645602062024]
本研究では,最新のテキスト・画像生成モデルから生成した合成画像が,画像認識タスクにどのように利用できるかを検討した。
本稿では,既存の生成モデルからの合成データの強大さと欠点を示し,認識タスクに合成データを適用するための戦略を提案する。
論文 参考訳(メタデータ) (2022-10-14T06:54:24Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
本研究では、シミュレーションデータセットに存在する困難とドメインギャップに対処する合成データ生成パイプラインを提案する。
既存のデータセットからアノテーションや視覚的手がかりを利用すれば、自動マルチモーダルデータ生成が容易になることを示す。
論文 参考訳(メタデータ) (2022-08-16T20:46:08Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
多要素代理モデリングは、異なるシミュレーション出力を融合させることで計算コストを削減する。
本稿では,多階層型階層型ニューラルネットワーク(MF-HNP)を提案する。
疫学および気候モデリングタスクにおけるMF-HNPの評価を行い、精度と不確実性評価の観点から競合性能を達成した。
論文 参考訳(メタデータ) (2022-06-10T04:54:13Z) - Deep Imitation Learning for Bimanual Robotic Manipulation [70.56142804957187]
本稿では,ロボットによるバイマニュアル操作のための深層模倣学習フレームワークを提案する。
中心となる課題は、操作スキルを異なる場所にあるオブジェクトに一般化することである。
i)マルチモーダルダイナミクスを要素運動プリミティブに分解し、(ii)リカレントグラフニューラルネットワークを用いて各プリミティブをパラメータ化して相互作用を捕捉し、(iii)プリミティブを逐次的に構成する高レベルプランナと、プリミティブダイナミクスと逆運動学制御を組み合わせた低レベルコントローラを統合することを提案する。
論文 参考訳(メタデータ) (2020-10-11T01:40:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。