論文の概要: LLMs' Leaning in European Elections
- arxiv url: http://arxiv.org/abs/2503.13554v2
- Date: Sat, 12 Jul 2025 12:15:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 20:53:35.042229
- Title: LLMs' Leaning in European Elections
- Title(参考訳): 欧州議会選挙におけるLLMの取り組み
- Authors: Federico Ricciuti,
- Abstract要約: この論文は、複数の欧州諸国におけるいくつかの仮想選挙を考慮して、アメリカ合衆国大統領選挙の以前の分析を延長している。
その結果、傾きは国によって均一ではないことが明らかとなった。
時折、モデルは仮想選挙における地位を辞退するが、拒否率そのものは国によって一様ではない。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many studies suggest that LLMs have left wing leans. The article extends previous analysis of US presidential elections considering several virtual elections in multiple European countries. The analysis considers multiple LLMs and the results confirm the extent of the leaning. Furthermore, the results show that the leaning is not uniform between countries. Sometimes, models refuse to take a position in the virtual elections, but the refusal rate itself is not uniform between countries.
- Abstract(参考訳): 多くの研究は、LLMが左翼に傾いていることを示唆している。
この論文は、複数の欧州諸国におけるいくつかの仮想選挙を考慮して、アメリカ合衆国大統領選挙の以前の分析を延長している。
解析では複数のLSMを考慮し, 傾きの程度を検証した。
さらに, この結果から, 傾きが諸国間に均一でないことが明らかとなった。
時折、モデルは仮想選挙における地位を辞退するが、拒否率そのものは国によって一様ではない。
関連論文リスト
- Disparities in LLM Reasoning Accuracy and Explanations: A Case Study on African American English [66.97110551643722]
本研究では,Large Language Models (LLMs) 推論タスクにおける方言の相違について検討する。
LLMは、AAE入力に対するより正確な応答とより単純な推論チェーンと説明を生成する。
これらの知見は、LLMの処理方法と異なる言語品種の理由の体系的差異を浮き彫りにした。
論文 参考訳(メタデータ) (2025-03-06T05:15:34Z) - Hidden Persuaders: LLMs' Political Leaning and Their Influence on Voters [42.80511959871216]
我々はまず、共和党候補よりも民主党候補を優先する18のオープン・クローズド・ウェイト LLM の政治的好意を示す。
教育訓練モデルでは、民主党候補への傾きがより顕著になることを示す。
さらに、米国登録有権者935名を対象に、LLMが有権者選択に与える影響について検討する。
論文 参考訳(メタデータ) (2024-10-31T17:51:00Z) - Large Language Models Reflect the Ideology of their Creators [71.65505524599888]
大規模言語モデル(LLM)は、自然言語を生成するために大量のデータに基づいて訓練される。
本稿では, LLMのイデオロギー的姿勢が創造者の世界観を反映していることを示す。
論文 参考訳(メタデータ) (2024-10-24T04:02:30Z) - When Neutral Summaries are not that Neutral: Quantifying Political Neutrality in LLM-Generated News Summaries [0.0]
本研究では, LLMの政治的中立性を定量化するための新たな視点を示す。
我々は、中絶、銃規制/権利、医療、移民、LGBTQ+の権利という、現在のアメリカの政治における5つの迫る問題について検討する。
我々の研究は、いくつかのよく知られたLLMにおいて、民主的偏見に対する一貫した傾向を明らかにした。
論文 参考訳(メタデータ) (2024-10-13T19:44:39Z) - Are LLMs Aware that Some Questions are not Open-ended? [58.93124686141781]
大規模言語モデルでは、いくつかの質問が限定的な回答を持ち、より決定論的に答える必要があることを認識しているかどうかを調査する。
LLMにおける疑問認識の欠如は,(1)非オープンな質問に答えるにはカジュアルすぎる,(2)オープンな質問に答えるには退屈すぎる,という2つの現象をもたらす。
論文 参考訳(メタデータ) (2024-10-01T06:07:00Z) - GermanPartiesQA: Benchmarking Commercial Large Language Models for Political Bias and Sycophancy [20.06753067241866]
我々は,OpenAI, Anthropic, Cohereの6つのLDMのアライメントをドイツ政党の立場と比較した。
我々は、主要なドイツの国会議員のベンチマークデータと社会デマグラフィーデータを用いて、迅速な実験を行う。
論文 参考訳(メタデータ) (2024-07-25T13:04:25Z) - Vox Populi, Vox AI? Using Language Models to Estimate German Public Opinion [45.84205238554709]
我々は,2017年ドイツ縦断選挙研究の回答者の個人特性と一致するペルソナの合成サンプルを生成した。
我々は,LSM GPT-3.5に対して,各回答者の投票選択を予測し,これらの予測を調査に基づく推定と比較する。
GPT-3.5は市民の投票選択を正確に予測せず、緑の党と左派に偏見を呈している。
論文 参考訳(メタデータ) (2024-07-11T14:52:18Z) - Whose Side Are You On? Investigating the Political Stance of Large Language Models [56.883423489203786]
大規模言語モデル(LLM)の政治的指向性について,8つのトピックのスペクトルにわたって検討する。
我々の調査は、中絶からLGBTQ問題まで8つのトピックにまたがるLLMの政治的整合性について考察している。
この結果から,ユーザはクエリ作成時に留意すべきであり,中立的なプロンプト言語を選択する際には注意が必要であることが示唆された。
論文 参考訳(メタデータ) (2024-03-15T04:02:24Z) - Beyond prompt brittleness: Evaluating the reliability and consistency of political worldviews in LLMs [13.036825846417006]
政治声明に対する大規模言語モデルの姿勢の信頼性と整合性を評価するための一連のテストを提案する。
本研究では, 7B から 70B までの大きさのモデルについて検討し, パラメータ数によって信頼性が向上することを確認した。
より大きなモデルは、左派政党との全体的な整合性を示すが、政策プログラムによって異なる。
論文 参考訳(メタデータ) (2024-02-27T16:19:37Z) - Political Compass or Spinning Arrow? Towards More Meaningful Evaluations for Values and Opinions in Large Language Models [61.45529177682614]
我々は,大規模言語モデルにおける価値と意見の制約評価パラダイムに挑戦する。
強制されない場合、モデルが実質的に異なる答えを与えることを示す。
我々はこれらの知見をLLMの価値と意見を評価するための推奨とオープンな課題に抽出する。
論文 参考訳(メタデータ) (2024-02-26T18:00:49Z) - LLM Voting: Human Choices and AI Collective Decision Making [0.0]
本稿では,大規模言語モデル (LLM) の投票行動,特に GPT-4 と LLaMA-2 について検討する。
投票方法の選択と提示順序がLLM投票結果に影響を及ぼすことがわかった。
さまざまな人格がこれらのバイアスの一部を減らし、人間の選択との整合性を高めることができることがわかった。
論文 参考訳(メタデータ) (2024-01-31T14:52:02Z) - The Dawn After the Dark: An Empirical Study on Factuality Hallucination
in Large Language Models [134.6697160940223]
幻覚は、大きな言語モデルの信頼できるデプロイには大きな課題となります。
幻覚(検出)の検出方法、LLMが幻覚(ソース)をなぜ検出するのか、そしてそれを緩和するために何ができるか、という3つの重要な疑問がよく研究されるべきである。
本研究は, 幻覚検出, 発生源, 緩和の3つの側面に着目した, LLM幻覚の系統的研究である。
論文 参考訳(メタデータ) (2024-01-06T12:40:45Z) - HallusionBench: An Advanced Diagnostic Suite for Entangled Language Hallucination and Visual Illusion in Large Vision-Language Models [69.52245481329899]
本稿では,画像コンテキスト推論評価のためのベンチマークであるHalusionBenchを紹介する。
このベンチマークは、1129の質問と組み合わせた346の画像で構成されており、すべて人間の専門家によって細心の注意を払って作成されている。
HallusionBenchの評価では、15種類のモデルをベンチマークし、最先端のGPT-4Vによって達成された31.42%の質問対精度を強調した。
論文 参考訳(メタデータ) (2023-10-23T04:49:09Z) - Modelling the Impact of Scandals: the case of the 2017 French
Presidential Election [0.0]
本稿では,2017年フランス大統領選挙に触発された大統領選挙のエージェントによるシミュレーションを提案する。
主な貢献は、選挙結果に対するスキャンダルやメディアのバッシングの影響を検討することである。
特に、有権者に投票する候補者がいないため、スキャンダルが選挙を棄権する可能性があることが示されている。
論文 参考訳(メタデータ) (2021-01-27T17:08:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。