論文の概要: SoccerSynth Field: enhancing field detection with synthetic data from virtual soccer simulator
- arxiv url: http://arxiv.org/abs/2503.13969v1
- Date: Tue, 18 Mar 2025 07:05:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-19 14:16:00.337592
- Title: SoccerSynth Field: enhancing field detection with synthetic data from virtual soccer simulator
- Title(参考訳): SoccerSynth Field:仮想サッカーシミュレータからの合成データによるフィールド検出の強化
- Authors: HaoBin Qin, Jiale Fang, Keisuke Fujii,
- Abstract要約: サッカー場検出のための合成データセット(Soccer Synth-Field)の有効性を提案する。
合成サッカー場データセットはモデルを事前訓練するために作成され、これらのモデルの性能は実世界のデータセットで訓練されたモデルと比較された。
- 参考スコア(独自算出の注目度): 0.8009842832476994
- License:
- Abstract: Field detection in team sports is an essential task in sports video analysis. However, collecting large-scale and diverse real-world datasets for training detection models is often cost and time-consuming. Synthetic datasets, which allow controlled variability in lighting, textures, and camera angles, will be a promising alternative for addressing these problems. This study addresses the challenges of high costs and difficulties in collecting real-world datasets by investigating the effectiveness of pretraining models using synthetic datasets. In this paper, we propose the effectiveness of using a synthetic dataset (SoccerSynth-Field) for soccer field detection. A synthetic soccer field dataset was created to pretrain models, and the performance of these models was compared with models trained on real-world datasets. The results demonstrate that models pretrained on the synthetic dataset exhibit superior performance in detecting soccer fields. This highlights the effectiveness of synthetic data in enhancing model robustness and accuracy, offering a cost-effective and scalable solution for advancing detection tasks in sports field detection.
- Abstract(参考訳): チームスポーツにおけるフィールド検出は,スポーツビデオ分析において重要な課題である。
しかし、検出モデルをトレーニングするために大規模で多様な実世界のデータセットを収集することは、しばしばコストと時間を要する。
照明、テクスチャ、カメラアングルの変動を制御できる合成データセットは、これらの問題に対処するための有望な代替手段となるだろう。
本研究は, 合成データセットを用いた事前学習モデルの有効性を検討することにより, 実世界のデータセット収集における高コスト化と難易度化の課題に対処する。
本稿では,サッカー場検出のための合成データセット(SoccerSynth-Field)の有効性を提案する。
合成サッカー場データセットはモデルを事前訓練するために作成され、これらのモデルの性能は実世界のデータセットで訓練されたモデルと比較された。
その結果, 合成データセット上で事前学習したモデルは, サッカー場の検出において優れた性能を示した。
これは、モデルロバスト性と精度を高めるための合成データの有効性を強調し、スポーツフィールド検出における検出タスクを前進させるためのコスト効率とスケーラブルなソリューションを提供する。
関連論文リスト
- SoccerSynth-Detection: A Synthetic Dataset for Soccer Player Detection [0.7332146059733189]
Soccer Synth-Detectionは、合成サッカー選手を検出するために設計された最初の合成データセットである。
広い範囲のランダムな照明やテクスチャ、シミュレートされたカメラモーションのぼかしなどが含まれる。
本研究は,サッカービデオ解析の分野でのアルゴリズム学習において,実際のデータセットを置き換える合成データセットの可能性を示すものである。
論文 参考訳(メタデータ) (2025-01-16T04:06:59Z) - Towards Reducing Data Acquisition and Labeling for Defect Detection using Simulated Data [0.04194295877935867]
多くの製造環境では、機械学習やコンピュータビジョンのためのアノテートデータがコストがかかるが、合成データは大幅に低コストで生成される。
したがって、実世界のデータを合成データで置き換えることは、大量のトレーニングデータを必要とする多くの機械学習アプリケーションにとって魅力的である。
アルミニウムホイールのX線スキャンにおける欠陥を検出する際に,そのような領域シフトに対処するためのアプローチについて議論する。
論文 参考訳(メタデータ) (2024-06-27T13:51:53Z) - Improving Object Detector Training on Synthetic Data by Starting With a Strong Baseline Methodology [0.14980193397844666]
本稿では,合成データを用いた学習における事前学習対象検出器の性能向上手法を提案する。
提案手法は,実画像の事前学習から得られた有用な特徴を忘れずに,合成データから有能な情報を抽出することに焦点を当てる。
論文 参考訳(メタデータ) (2024-05-30T08:31:01Z) - Best Practices and Lessons Learned on Synthetic Data [83.63271573197026]
AIモデルの成功は、大規模で多様な、高品質なデータセットの可用性に依存している。
合成データは、現実世界のパターンを模倣する人工データを生成することによって、有望なソリューションとして現れてきた。
論文 参考訳(メタデータ) (2024-04-11T06:34:17Z) - Real Acoustic Fields: An Audio-Visual Room Acoustics Dataset and Benchmark [65.79402756995084]
Real Acoustic Fields (RAF)は、複数のモードから実際の音響室データをキャプチャする新しいデータセットである。
RAFは密集した室内音響データを提供する最初のデータセットである。
論文 参考訳(メタデータ) (2024-03-27T17:59:56Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
眼球画像のセグメンテーションは、最終視線推定に大きな影響を及ぼす眼球追跡の重要なステップである。
対象視線画像と合成訓練データとの重なり合いを測定するために,次元還元法を用いている。
提案手法は,シミュレーションと実世界のデータサンプルの相違に対処する際の頑健で,性能が向上する。
論文 参考訳(メタデータ) (2024-03-23T22:32:06Z) - Learning from Synthetic Data for Visual Grounding [55.21937116752679]
そこで本研究では,SynGroundが市販のビジョン・アンド・ランゲージモデルのローカライズ能力を向上できることを示す。
SynGroundで生成されたデータは、事前訓練されたALBEFモデルとBLIPモデルのポインティングゲーム精度をそれぞれ4.81%、絶対パーセンテージポイント17.11%向上させる。
論文 参考訳(メタデータ) (2024-03-20T17:59:43Z) - The Big Data Myth: Using Diffusion Models for Dataset Generation to
Train Deep Detection Models [0.15469452301122172]
本研究では, 微調整型安定拡散モデルによる合成データセット生成のための枠組みを提案する。
本研究の結果から, 合成データを用いた物体検出モデルは, ベースラインモデルと同じような性能を示すことが明らかとなった。
論文 参考訳(メタデータ) (2023-06-16T10:48:52Z) - Bridging the Gap: Enhancing the Utility of Synthetic Data via
Post-Processing Techniques [7.967995669387532]
生成モデルは、実世界のデータを置き換えたり拡張したりできる合成データセットを生成するための有望なソリューションとして登場した。
本稿では,合成データセットの品質と多様性を向上させるために,新しい3つのポストプロセッシング手法を提案する。
Gap Filler(GaFi)は、Fashion-MNIST、CIFAR-10、CIFAR-100データセットにおいて、実精度スコアとのギャップを2.03%、1.78%、および3.99%に効果的に減少させることを示した。
論文 参考訳(メタデータ) (2023-05-17T10:50:38Z) - Synthetic-to-Real Domain Adaptation for Action Recognition: A Dataset and Baseline Performances [76.34037366117234]
ロボット制御ジェスチャー(RoCoG-v2)と呼ばれる新しいデータセットを導入する。
データセットは7つのジェスチャークラスの実ビデオと合成ビデオの両方で構成されている。
我々は,最先端の行動認識とドメイン適応アルゴリズムを用いて結果を示す。
論文 参考訳(メタデータ) (2023-03-17T23:23:55Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
本研究では、シミュレーションデータセットに存在する困難とドメインギャップに対処する合成データ生成パイプラインを提案する。
既存のデータセットからアノテーションや視覚的手がかりを利用すれば、自動マルチモーダルデータ生成が容易になることを示す。
論文 参考訳(メタデータ) (2022-08-16T20:46:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。