PET-MAD, a universal interatomic potential for advanced materials modeling
- URL: http://arxiv.org/abs/2503.14118v1
- Date: Tue, 18 Mar 2025 10:35:30 GMT
- Title: PET-MAD, a universal interatomic potential for advanced materials modeling
- Authors: Arslan Mazitov, Filippo Bigi, Matthias Kellner, Paolo Pegolo, Davide Tisi, Guillaume Fraux, Sergey Pozdnyakov, Philip Loche, Michele Ceriotti,
- Abstract summary: Machine-learning interatomic potentials (MLIPs) have greatly extended the reach of atomic-scale simulations.<n>We introduce PET-MAD, a generally applicable MLIP trained on a dataset combining stable inorganic and organic solids.<n>We assess PET-MAD's accuracy on established benchmarks and advanced simulations of six materials.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine-learning interatomic potentials (MLIPs) have greatly extended the reach of atomic-scale simulations, offering the accuracy of first-principles calculations at a fraction of the effort. Leveraging large quantum mechanical databases and expressive architectures, recent "universal" models deliver qualitative accuracy across the periodic table but are often biased toward low-energy configurations. We introduce PET-MAD, a generally applicable MLIP trained on a dataset combining stable inorganic and organic solids, systematically modified to enhance atomic diversity. Using a moderate but highly-consistent level of electronic-structure theory, we assess PET-MAD's accuracy on established benchmarks and advanced simulations of six materials. PET-MAD rivals state-of-the-art MLIPs for inorganic solids, while also being reliable for molecules, organic materials, and surfaces. It is stable and fast, enabling, out-of-the-box, the near-quantitative study of thermal and quantum mechanical fluctuations, functional properties, and phase transitions. It can be efficiently fine-tuned to deliver full quantum mechanical accuracy with a minimal number of targeted calculations.
Related papers
- Ensemble Knowledge Distillation for Machine Learning Interatomic Potentials [0.0]
Machine learning interatomic potentials (MLIPs) are a promising tool to accelerate atomistic simulations and molecular property prediction.<n>The quality of MLIPs depends on the quantity of available training data as well as the quantum chemistry (QC) level of theory used to generate that data.<n>We present an ensemble knowledge distillation (EKD) method to improve MLIP accuracy when trained to energy-only datasets.
arXiv Detail & Related papers (2025-03-18T14:32:51Z) - Excited-state nonadiabatic dynamics in explicit solvent using machine learned interatomic potentials [0.602276990341246]
We use FieldSchNet to replace QM/MM electrostatic embedding with its ML/MM counterpart for nonadiabatic excited state trajectories.
Our results demonstrate that the ML/MM model reproduces the electronic kinetics and structural rearrangements of QM/MM surface hopping reference simulations.
arXiv Detail & Related papers (2025-01-28T14:14:43Z) - Predicting ionic conductivity in solids from the machine-learned potential energy landscape [68.25662704255433]
Superionic materials are essential for advancing solid-state batteries, which offer improved energy density and safety.
Conventional computational methods for identifying such materials are resource-intensive and not easily scalable.
We propose an approach for the quick and reliable evaluation of ionic conductivity through the analysis of a universal interatomic potential.
arXiv Detail & Related papers (2024-11-11T09:01:36Z) - Multi-task learning for molecular electronic structure approaching coupled-cluster accuracy [9.81014501502049]
We develop a unified machine learning method for electronic structures of organic molecules using the gold-standard CCSD(T) calculations as training data.
Tested on hydrocarbon molecules, our model outperforms DFT with the widely-used hybrid and double hybrid functionals in computational costs and prediction accuracy of various quantum chemical properties.
arXiv Detail & Related papers (2024-05-09T19:51:27Z) - Interpolation and differentiation of alchemical degrees of freedom in machine learning interatomic potentials [0.980222898148295]
We report the use of continuous and differentiable alchemical degrees of freedom in atomistic materials simulations.<n>The proposed method introduces alchemical atoms with corresponding weights into the input graph, alongside modifications to the message-passing and readout mechanisms of MLIPs.<n>The end-to-end differentiability of MLIPs enables efficient calculation of the gradient of energy with respect to the compositional weights.
arXiv Detail & Related papers (2024-04-16T17:24:22Z) - QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules [69.25826391912368]
We generate a new Quantum Hamiltonian dataset, named as QH9, to provide precise Hamiltonian matrices for 999 or 2998 molecular dynamics trajectories.
We show that current machine learning models have the capacity to predict Hamiltonian matrices for arbitrary molecules.
arXiv Detail & Related papers (2023-06-15T23:39:07Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
Molecular dynamics (MD) simulations allow atomistic insights into chemical and biological processes.
Recently, machine learned force fields (MLFFs) emerged as an alternative means to execute MD simulations.
This work proposes a general approach to constructing accurate MLFFs for large-scale molecular simulations.
arXiv Detail & Related papers (2022-05-17T13:08:28Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
Machine-learning force fields (MLFF) should be accurate, computationally and data efficient, and applicable to molecules, materials, and interfaces thereof.
Here, we introduce the Bravais-Inspired Gradient-Domain Machine Learning approach and demonstrate its ability to construct reliable force fields using a training set with just 10-200 atoms.
arXiv Detail & Related papers (2021-06-08T10:14:57Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
We benchmark the accuracy of VQE and ADAPT-VQE to calculate the electronic ground states and potential energy curves.
We find both methods provide good estimates of the energy and ground state.
gradient-based optimization is more economical and delivers superior performance than analogous simulations carried out with gradient-frees.
arXiv Detail & Related papers (2020-11-02T19:52:04Z) - Graph Neural Network for Hamiltonian-Based Material Property Prediction [56.94118357003096]
We present and compare several different graph convolution networks that are able to predict the band gap for inorganic materials.
The models are developed to incorporate two different features: the information of each orbital itself and the interaction between each other.
The results show that our model can get a promising prediction accuracy with cross-validation.
arXiv Detail & Related papers (2020-05-27T13:32:10Z) - Automated discovery of a robust interatomic potential for aluminum [4.6028828826414925]
Machine learning (ML) based potentials aim for faithful emulation of quantum mechanics (QM) calculations at drastically reduced computational cost.
We present a highly automated approach to dataset construction using the principles of active learning (AL)
We demonstrate this approach by building an ML potential for aluminum (ANI-Al)
To demonstrate transferability, we perform a 1.3M atom shock simulation, and show that ANI-Al predictions agree very well with DFT calculations on local atomic environments sampled from the nonequilibrium dynamics.
arXiv Detail & Related papers (2020-03-10T19:06:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.