論文の概要: Improving Adaptive Density Control for 3D Gaussian Splatting
- arxiv url: http://arxiv.org/abs/2503.14274v1
- Date: Tue, 18 Mar 2025 14:09:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-19 14:15:46.789296
- Title: Improving Adaptive Density Control for 3D Gaussian Splatting
- Title(参考訳): 3次元ガウスめっきにおける適応密度制御の改善
- Authors: Glenn Grubert, Florian Barthel, Anna Hilsmann, Peter Eisert,
- Abstract要約: 3D Gaussian Splattingは、過去1年で最も影響力のある作品の1つだ。
シーン再構築の際に使用されるガウス的プリミティブの数を適切に管理する上での課題に直面している。
本稿では,適応密度制御機構の3つの改良点を提案する。
- 参考スコア(独自算出の注目度): 3.2248805768155835
- License:
- Abstract: 3D Gaussian Splatting (3DGS) has become one of the most influential works in the past year. Due to its efficient and high-quality novel view synthesis capabilities, it has been widely adopted in many research fields and applications. Nevertheless, 3DGS still faces challenges to properly manage the number of Gaussian primitives that are used during scene reconstruction. Following the adaptive density control (ADC) mechanism of 3D Gaussian Splatting, new Gaussians in under-reconstructed regions are created, while Gaussians that do not contribute to the rendering quality are pruned. We observe that those criteria for densifying and pruning Gaussians can sometimes lead to worse rendering by introducing artifacts. We especially observe under-reconstructed background or overfitted foreground regions. To encounter both problems, we propose three new improvements to the adaptive density control mechanism. Those include a correction for the scene extent calculation that does not only rely on camera positions, an exponentially ascending gradient threshold to improve training convergence, and significance-aware pruning strategy to avoid background artifacts. With these adaptions, we show that the rendering quality improves while using the same number of Gaussians primitives. Furthermore, with our improvements, the training converges considerably faster, allowing for more than twice as fast training times while yielding better quality than 3DGS. Finally, our contributions are easily compatible with most existing derivative works of 3DGS making them relevant for future works.
- Abstract(参考訳): 3D Gaussian Splatting (3DGS)は、過去1年で最も影響力のある作品の1つだ。
効率的で高品質な新規ビュー合成能力のため、多くの研究分野や応用で広く採用されている。
それでも3DGSは、シーン再構築時に使用されるガウスのプリミティブの数を適切に管理するための課題に直面している。
3次元ガウス格子の適応密度制御(ADC)機構に続いて、未再構成領域の新しいガウスが生成され、レンダリング品質に寄与しないガウスが切断される。
密度化と刈り取りの基準が、時にアーティファクトの導入によるレンダリングを悪化させる可能性があることを観察する。
特に,再建されていない背景や過度に適合した前景を観察する。
両問題に対処するため,適応密度制御機構の3つの改良点を提案する。
これには、カメラ位置に依存するだけでなく、トレーニング収束を改善するために指数関数的に上昇する勾配閾値、バックグラウンドアーティファクトを避けるために重要視されるプルーニング戦略などが含まれる。
これらの適応により、同じ数のガウスプリミティブを使用しながら、レンダリング品質が向上することを示す。
さらに、我々の改善により、トレーニングは相当早く収束し、3DGSよりも優れた品質が得られると同時に、トレーニング時間の2倍以上の速さで実行できます。
最後に、我々の貢献は既存の3DGSの派生作品と容易に相容れないので、将来の作品と関係がある。
関連論文リスト
- Pushing Rendering Boundaries: Hard Gaussian Splatting [72.28941128988292]
3D Gaussian Splatting (3DGS) は,NVS(Noven View Synthesis) をリアルタイムなレンダリング方式で実現した。
我々はHGSと呼ばれるハードガウシアンスプラッティングを提案し、これは多視点的な位置勾配とレンダリング誤差を考慮し、ハードガウシアンを成長させる。
本手法は,リアルタイムの効率を保ちながら,最先端のレンダリング品質を実現する。
論文 参考訳(メタデータ) (2024-12-06T07:42:47Z) - Beyond Gaussians: Fast and High-Fidelity 3D Splatting with Linear Kernels [51.08794269211701]
本稿では,ガウスカーネルを線形カーネルに置き換えて,よりシャープで高精度な結果を得る3Dリニアスティング(DLS)を提案する。
3DLSは、最先端の忠実さと正確さを示し、ベースライン3DGSよりも30%のFPS改善を実現している。
論文 参考訳(メタデータ) (2024-11-19T11:59:54Z) - Efficient Density Control for 3D Gaussian Splatting [3.6379656024631215]
3D Gaussian Splatting (3DGS) は新規なビュー合成において優れた性能を示した。
本研究では,(1)ガウシアンの位置,形状,不透明度を正確に制御するLong-Axis Split,(2)ガウシアンに対する不完全性の再設定後の回復速度の差を利用したリカバリ・アウェア・プルーニングを提案する。
論文 参考訳(メタデータ) (2024-11-15T12:12:56Z) - CityGaussianV2: Efficient and Geometrically Accurate Reconstruction for Large-Scale Scenes [53.107474952492396]
CityGaussianV2は大規模なシーン再構築のための新しいアプローチである。
分解段階の密度化・深さ回帰手法を実装し, ぼやけたアーチファクトを除去し, 収束を加速する。
本手法は, 視覚的品質, 幾何学的精度, ストレージ, トレーニングコストの両立を図っている。
論文 参考訳(メタデータ) (2024-11-01T17:59:31Z) - Effective Rank Analysis and Regularization for Enhanced 3D Gaussian Splatting [33.01987451251659]
3D Gaussian Splatting(3DGS)は、高品質な3D再構成によるリアルタイムレンダリングが可能な有望な技術として登場した。
その可能性にもかかわらず、3DGSは針状アーティファクト、準最適ジオメトリー、不正確な正常といった課題に遭遇する。
正規化として有効ランクを導入し、ガウスの構造を制約する。
論文 参考訳(メタデータ) (2024-06-17T15:51:59Z) - RaDe-GS: Rasterizing Depth in Gaussian Splatting [32.38730602146176]
Gaussian Splatting (GS) は、高品質でリアルタイムなレンダリングを実現するために、新しいビュー合成に非常に効果的であることが証明されている。
本研究は,DTUデータセット上のNeuraLangeloに匹敵するチャムファー距離誤差を導入し,元の3D GS法と同様の計算効率を維持する。
論文 参考訳(メタデータ) (2024-06-03T15:56:58Z) - LP-3DGS: Learning to Prune 3D Gaussian Splatting [71.97762528812187]
本稿では,トレーニング可能な2値マスクを重要度に応用し,最適プルーニング比を自動的に検出する3DGSを提案する。
実験の結果,LP-3DGSは効率と高品質の両面において良好なバランスを保っていることがわかった。
論文 参考訳(メタデータ) (2024-05-29T05:58:34Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGSはStructure-from-Motion (SfM)技術によって生成されるポイントクラウドに大きく依存している。
本稿では, 3次元ガウスの密度化を導くために, プログレッシブ・プログレッシブ・プログレッシブ・ストラテジーを適用した新しい手法を提案する。
提案手法はデータセット上の3DGSを大幅に上回り,PSNRでは1.15dBの改善が見られた。
論文 参考訳(メタデータ) (2024-02-22T16:00:20Z) - Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering [71.44349029439944]
最近の3次元ガウス散乱法は、最先端のレンダリング品質と速度を達成している。
局所的な3Dガウス分布にアンカーポイントを用いるScaffold-GSを導入する。
提案手法は,高品質なレンダリングを実現しつつ,冗長なガウスを効果的に削減できることを示す。
論文 参考訳(メタデータ) (2023-11-30T17:58:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。