論文の概要: Revealing higher-order neural representations of uncertainty with the Noise Estimation through Reinforcement-based Diffusion (NERD) model
- arxiv url: http://arxiv.org/abs/2503.14333v2
- Date: Wed, 25 Jun 2025 19:04:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-27 15:38:00.158737
- Title: Revealing higher-order neural representations of uncertainty with the Noise Estimation through Reinforcement-based Diffusion (NERD) model
- Title(参考訳): 強化型拡散(NERD)モデルによる騒音推定の不確かさの高次神経表現の探索
- Authors: Hojjat Azimi Asrari, Megan A. K. Peters,
- Abstract要約: ノイズ予測」HORは、脳が自身のノイズについて学ぶ必要があるかもしれないタスクのニューラルデータを用いて研究する。
本研究は, 強化型拡散モデルによる騒音推定手法を開発し, 応用するものである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Studies often aim to reveal ``first-order" representations (FORs), which encode aspects of an observer's environment, such as contents or structure. A less-common target is ``higher-order" representations (HORs), which are ``about" FORs -- e.g., their strength or uncertainty -- and which may contribute to learning. HORs about uncertainty are unlikely to be direct ``read-outs" of FOR characteristics, instead reflecting noisy estimation processes incorporating prior expectations about uncertainty, but how the brain represents such expected uncertainty distributions remains largely unexplored. Here, we study ``noise expectation" HORs using neural data from a task which may require the brain to learn about its own noise: decoded neurofeedback, wherein human subjects learn to volitionally produce target neural patterns. We develop and apply a Noise Estimation through Reinforcement-based Diffusion (NERD) model to characterize how brains may undertake this process, and show that NERD offers high explanatory power for human behavior.
- Abstract(参考訳): コンテントや構造などのオブザーバの環境の側面をエンコードする「第1次」表現(FORs)をしばしば明らかにすることを目的としている。あまり一般的ではないターゲットは「高次」表現(HORs)であり、これは" `about" Fors --eg、その強さまたは不確実性 -- であり、学習に寄与する可能性がある。不確実性に関するHORは、FOR特性の「"read-outs" とは言い難い。代わりに、不確実性に関する事前の期待を反映したノイズのある推定プロセスを反映するが、脳がどのようにしてそのような不確実性分布を表わすのかは明らかにされていない。
本稿では,脳のノイズを学習するために,脳からのニューラルデータを用いた「ノイズ予測」法について検討する。
本研究では, 強化型拡散(NERD)モデルによる騒音推定手法を開発し, 人間の行動に高い説明力を与えることを示す。
関連論文リスト
- Explainability through uncertainty: Trustworthy decision-making with neural networks [1.104960878651584]
不確実性は、あらゆる機械学習モデルの主要な特徴である。
ニューラルネットワークでは特に重要であり、過信されがちである。
XAIとしての不確実性は、下流の意思決定タスクにおけるモデルの信頼性を改善する。
論文 参考訳(メタデータ) (2024-03-15T10:22:48Z) - Human Trajectory Forecasting with Explainable Behavioral Uncertainty [63.62824628085961]
人間の軌道予測は人間の行動を理解し予測し、社会ロボットから自動運転車への応用を可能にする。
モデルフリー手法は予測精度が優れているが説明可能性に欠ける一方、モデルベース手法は説明可能性を提供するが、よく予測できない。
BNSP-SFMは,11種類の最先端手法と比較して,予測精度を最大50%向上することを示す。
論文 参考訳(メタデータ) (2023-07-04T16:45:21Z) - Causal Analysis for Robust Interpretability of Neural Networks [0.2519906683279152]
我々は、事前学習されたニューラルネットワークの因果効果を捉えるための頑健な介入に基づく手法を開発した。
分類タスクで訓練された視覚モデルに本手法を適用した。
論文 参考訳(メタデータ) (2023-05-15T18:37:24Z) - Neural Additive Models for Location Scale and Shape: A Framework for
Interpretable Neural Regression Beyond the Mean [1.0923877073891446]
ディープニューラルネットワーク(DNN)は、様々なタスクで非常に効果的であることが証明されている。
この成功にもかかわらず、DNNの内部構造はしばしば透明ではない。
この解釈可能性の欠如は、本質的に解釈可能なニューラルネットワークの研究の増加につながった。
論文 参考訳(メタデータ) (2023-01-27T17:06:13Z) - Deep Learning Reproducibility and Explainable AI (XAI) [9.13755431537592]
ディープラーニング(DL)学習アルゴリズムの非決定性とそのニューラルネットワーク(NN)モデルの説明可能性への影響について検討した。
この問題について議論するため、2つの畳み込みニューラルネットワーク(CNN)をトレーニングし、その結果を比較した。
論文 参考訳(メタデータ) (2022-02-23T12:06:20Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Backprop-Free Reinforcement Learning with Active Neural Generative
Coding [84.11376568625353]
動的環境におけるエラー(バックプロップ)のバックプロパゲーションを伴わない行動駆動型生成モデルの学習のための計算フレームワークを提案する。
我々は、まばらな報酬でも機能するインテリジェントエージェントを開発し、推論として計画の認知理論からインスピレーションを得ている。
我々のエージェントの堅牢な性能は、神経推論と学習のためのバックプロップフリーアプローチがゴール指向の行動を促進するという有望な証拠を提供する。
論文 参考訳(メタデータ) (2021-07-10T19:02:27Z) - The Neural Coding Framework for Learning Generative Models [91.0357317238509]
本稿では,脳の予測処理理論に触発された新しい神経生成モデルを提案する。
同様に、私たちの生成モデルにおける人工ニューロンは、隣接するニューロンが何をするかを予測し、予測が現実にどの程度一致するかに基づいてパラメータを調整します。
論文 参考訳(メタデータ) (2020-12-07T01:20:38Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
本稿では,属性空間への分類器の露出を最大化するために,新しいサンプルを生成することを学習する逆学習手法を提案する。
我々のアプローチは、ディープニューラルネットワークが自然に発生する摂動に対して堅牢であることを可能にする。
論文 参考訳(メタデータ) (2020-12-03T10:17:30Z) - Ramifications of Approximate Posterior Inference for Bayesian Deep
Learning in Adversarial and Out-of-Distribution Settings [7.476901945542385]
ベイジアン深層学習モデルが従来のニューラルネットワークよりわずかに優れていることを示す。
予備的な調査は、初期化、アーキテクチャ、アクティベーション関数の選択によるバイアスの潜在的固有の役割を示している。
論文 参考訳(メタデータ) (2020-09-03T16:58:15Z) - Neural Networks with Recurrent Generative Feedback [61.90658210112138]
畳み込みニューラルネットワーク(CNN)でこの設計をインスタンス化する
実験では、標準ベンチマーク上の従来のフィードフォワードCNNに対して、CNN-Fは敵のロバスト性を大幅に改善した。
論文 参考訳(メタデータ) (2020-07-17T19:32:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。