論文の概要: Spatio-Temporal Graph Neural Networks for Infant Language Acquisition Prediction
- arxiv url: http://arxiv.org/abs/2503.14341v1
- Date: Tue, 18 Mar 2025 15:21:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-19 14:17:59.629841
- Title: Spatio-Temporal Graph Neural Networks for Infant Language Acquisition Prediction
- Title(参考訳): 幼児言語獲得予測のための時空間グラフニューラルネットワーク
- Authors: Andrew Roxburgh, Floriana Grasso, Terry R. Payne,
- Abstract要約: 幼児・幼児向け言語習得モデルの構築と、時空間グラフ畳み込みネットワーク(STGCN)での活用
本稿では,子語彙獲得の予測に新たなアプローチを導入し,言語習得の過程で発生する言語関係の異なるタイプに対して,そのようなモデルの有効性を評価する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Predicting the words that a child is going to learn next can be useful for boosting language acquisition, and such predictions have been shown to be possible with both neural network techniques (looking at changes in the vocabulary state over time) and graph model (looking at data pertaining to the relationships between words). However, these models do not fully capture the complexity of the language learning process of an infant when used in isolation. In this paper, we examine how a model of language acquisition for infants and young children can be constructed and adapted for use in a Spatio-Temporal Graph Convolutional Network (STGCN), taking into account the different types of linguistic relationships that occur during child language learning. We introduce a novel approach for predicting child vocabulary acquisition, and evaluate the efficacy of such a model with respect to the different types of linguistic relationships that occur during language acquisition, resulting in insightful observations on model calibration and norm selection. An evaluation of this model found that the mean accuracy of models for predicting new words when using sensorimotor relationships (0.733) and semantic relationships (0.729) were found to be superior to that observed with a 2-layer Feed-forward neural network. Furthermore, the high recall for some relationships suggested that some relationships (e.g. visual) were superior in identifying a larger proportion of relevant words that a child should subsequently learn than others (such as auditory).
- Abstract(参考訳): 子どもが次に学習する単語を予測することは言語習得を促進するのに有用であり、そのような予測はニューラルネットワーク技術(時間の経過とともに語彙の状態の変化を見る)とグラフモデル(単語間の関係に関連するデータを見る)の両方で可能であることが示されている。
しかし、これらのモデルは、単独で使用する幼児の言語学習プロセスの複雑さを完全に捉えていない。
本稿では,幼児と幼児の言語習得モデルの構築と,子どもの言語学習における言語関係の異なるタイプを考慮した時空間グラフ畳み込みネットワーク(STGCN)の活用について検討する。
幼児の語彙獲得を予測する新しいアプローチを導入し,言語習得の過程で発生する言語関係の異なるタイプに対して,そのようなモデルの有効性を評価し,モデル校正と規範選択に関する洞察力のある観察結果を得た。
このモデルの評価では, 知覚的関係(0.733)と意味的関係(0.729)を用いた場合, 新たな単語を予測するモデルの平均精度が, 2層フィードフォワードニューラルネットワークで観測されたモデルよりも優れていることがわかった。
さらに、一部の関係性(例えば視覚的)は、子どもが他の関係性(例えば聴覚)よりも学習すべき関連単語の比率がより大きいことが示唆された。
関連論文リスト
- A Distributional Perspective on Word Learning in Neural Language Models [57.41607944290822]
言語モデルにおける単語学習のための広く合意されたメトリクスは存在しない。
我々は、先行研究で研究された分布シグネチャは、重要な分布情報の取得に失敗すると主張している。
我々は、スクラッチから訓練する小さな言語モデルを選択するための学習軌跡を得る。
論文 参考訳(メタデータ) (2025-02-09T13:15:59Z) - Developmental Predictive Coding Model for Early Infancy Mono and Bilingual Vocal Continual Learning [69.8008228833895]
本稿では,連続学習機構を備えた小型生成ニューラルネットワークを提案する。
我々のモデルは解釈可能性を重視し,オンライン学習の利点を実証する。
論文 参考訳(メタデータ) (2024-12-23T10:23:47Z) - Is Child-Directed Speech Effective Training Data for Language Models? [34.46268640655943]
GPT-2 と RoBERTa モデルを英語の子供指向音声の29万語で学習する。
子どものトレーニングデータのグローバルな発達順序付けやローカルな談話順序付けが、他のデータセットと比較して高いパフォーマンスを支えているかどうかを検証する。
これらの結果は、より良いデータから進むのではなく、子供の学習アルゴリズムが現在の言語モデリング技術よりもはるかにデータ効率が高いという仮説を支持している。
論文 参考訳(メタデータ) (2024-08-07T08:18:51Z) - Visual Grounding Helps Learn Word Meanings in Low-Data Regimes [47.7950860342515]
現代のニューラル言語モデル(LM)は、人間の文の生成と理解をモデル化するための強力なツールである。
しかし、これらの結果を得るためには、LMは明らかに非人間的な方法で訓練されなければならない。
より自然主義的に訓練されたモデルは、より人間らしい言語学習を示すのか?
本稿では,言語習得における重要なサブタスクである単語学習の文脈において,この問題を考察する。
論文 参考訳(メタデータ) (2023-10-20T03:33:36Z) - Dependency-based Mixture Language Models [53.152011258252315]
依存性に基づく混合言語モデルを紹介する。
より詳しくは、依存関係モデリングの新たな目的により、まずニューラルネットワークモデルを訓練する。
次に、前回の依存性モデリング確率分布と自己意図を混合することにより、次の確率を定式化する。
論文 参考訳(メタデータ) (2022-03-19T06:28:30Z) - Word Acquisition in Neural Language Models [0.38073142980733]
ニューラルネットワークモデルは,学習中に個々の単語を習得し,学習曲線を抽出し,600以上の単語の獲得年齢を推定する。
子どもや言語モデルでは, 具体性, 単語長, 語彙クラスの影響が顕著に異なることがわかった。
論文 参考訳(メタデータ) (2021-10-05T23:26:16Z) - Evaluating Models of Robust Word Recognition with Serial Reproduction [8.17947290421835]
広範囲確率的生成言語モデルと人間の言語的期待を捉える能力の比較を行った。
先行した言語的文脈の抽象表現を利用するこれらのモデルは、連続再生の過程で人々が行った変化を最もよく予測する。
論文 参考訳(メタデータ) (2021-01-24T20:16:12Z) - A Visuospatial Dataset for Naturalistic Verb Learning [18.654373173232205]
基礎言語モデルのトレーニングと評価のための新しいデータセットを導入する。
我々のデータはバーチャルリアリティー環境で収集され、言語データの品質をエミュレートするように設計されている。
収集したデータを用いて、動詞学習のための複数の分布意味論モデルを比較する。
論文 参考訳(メタデータ) (2020-10-28T20:47:13Z) - Constructing Taxonomies from Pretrained Language Models [52.53846972667636]
本稿では,事前学習した言語モデルを用いて分類木(WordNetなど)を構築する手法を提案する。
我々のアプローチは2つのモジュールから構成されており、1つは親関係を予測し、もう1つはそれらの予測を木に調整する。
我々は、WordNetからサンプリングされたサブツリーでモデルをトレーニングし、重複しないWordNetサブツリーでテストする。
論文 参考訳(メタデータ) (2020-10-24T07:16:21Z) - Mechanisms for Handling Nested Dependencies in Neural-Network Language
Models and Humans [75.15855405318855]
我々は,「深層学習」手法で訓練された現代人工ニューラルネットワークが,人間の文処理の中心的な側面を模倣するかどうかを検討した。
ネットワークは、大きなコーパスで次の単語を予測するためにのみ訓練されたが、分析の結果、局所的および長距離の構文合意をうまく処理する特別なユニットが出現した。
我々は,複数の名詞の単数/複数状態における体系的な変化を伴う文中の数一致の違反を人間が検出する行動実験において,モデルの予測を検証した。
論文 参考訳(メタデータ) (2020-06-19T12:00:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。