End-to-End Optimal Detector Design with Mutual Information Surrogates
- URL: http://arxiv.org/abs/2503.14342v1
- Date: Tue, 18 Mar 2025 15:23:03 GMT
- Title: End-to-End Optimal Detector Design with Mutual Information Surrogates
- Authors: Kinga Anna Wozniak, Stephen Mulligan, Jan Kieseler, Markus Klute, Francois Fleuret, Tobias Golling,
- Abstract summary: We introduce a novel approach for end-to-end black-box optimization of high energy physics detectors using local deep learning (DL) surrogates.<n>In addition to a standard reconstruction-based metric commonly used in the field, we investigate the information-theoretic metric of mutual information.<n>Our findings reveal three key insights: (1) end-toend black-box optimization using local surrogates is a practical and compelling approach for detector design; (2) mutual information-based optimization yields design choices that closely match those from state-of-the-art physics-informed methods; and (3) information-theoretic methods provide a
- Score: 1.7042756021131187
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a novel approach for end-to-end black-box optimization of high energy physics (HEP) detectors using local deep learning (DL) surrogates. These surrogates approximate a scalar objective function that encapsulates the complex interplay of particle-matter interactions and physics analysis goals. In addition to a standard reconstruction-based metric commonly used in the field, we investigate the information-theoretic metric of mutual information. Unlike traditional methods, mutual information is inherently task-agnostic, offering a broader optimization paradigm that is less constrained by predefined targets. We demonstrate the effectiveness of our method in a realistic physics analysis scenario: optimizing the thicknesses of calorimeter detector layers based on simulated particle interactions. The surrogate model learns to approximate objective gradients, enabling efficient optimization with respect to energy resolution. Our findings reveal three key insights: (1) end-to-end black-box optimization using local surrogates is a practical and compelling approach for detector design, providing direct optimization of detector parameters in alignment with physics analysis goals; (2) mutual information-based optimization yields design choices that closely match those from state-of-the-art physics-informed methods, indicating that these approaches operate near optimality and reinforcing their reliability in HEP detector design; and (3) information-theoretic methods provide a powerful, generalizable framework for optimizing scientific instruments. By reframing the optimization process through an information-theoretic lens rather than domain-specific heuristics, mutual information enables the exploration of new avenues for discovery beyond conventional approaches.
Related papers
- Enhancing Explainability and Reliable Decision-Making in Particle Swarm Optimization through Communication Topologies [14.88267665338613]
This study focuses on how different communication topologies affect convergence and search behaviors.
Using an adapted IOHxplainer, we investigate how these topologies influence information flow, diversity, and convergence speed.
arXiv Detail & Related papers (2025-04-17T10:05:10Z) - Offline Model-Based Optimization: Comprehensive Review [61.91350077539443]
offline optimization is a fundamental challenge in science and engineering, where the goal is to optimize black-box functions using only offline datasets.
Recent advances in model-based optimization have harnessed the generalization capabilities of deep neural networks to develop offline-specific surrogate and generative models.
Despite its growing impact in accelerating scientific discovery, the field lacks a comprehensive review.
arXiv Detail & Related papers (2025-03-21T16:35:02Z) - A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
Large-scale Mixture of Experts (MoE) models offer enhanced model capacity and computational efficiency through conditional computation.<n> deploying and running inference on these models presents significant challenges in computational resources, latency, and energy efficiency.<n>This survey analyzes optimization techniques for MoE models across the entire system stack.
arXiv Detail & Related papers (2024-12-18T14:11:15Z) - Enhanced Bayesian Optimization via Preferential Modeling of Abstract
Properties [49.351577714596544]
We propose a human-AI collaborative Bayesian framework to incorporate expert preferences about unmeasured abstract properties into surrogate modeling.
We provide an efficient strategy that can also handle any incorrect/misleading expert bias in preferential judgments.
arXiv Detail & Related papers (2024-02-27T09:23:13Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - TREET: TRansfer Entropy Estimation via Transformer [1.1510009152620668]
Transfer entropy (TE) is a measurement in information theory that reveals the directional flow of information between processes.
This work proposes Transfer Entropy Estimation via Transformers (TREET), a novel transformer-based approach for estimating the TE for stationary processes.
arXiv Detail & Related papers (2024-02-10T09:53:21Z) - Photonic Structures Optimization Using Highly Data-Efficient Deep
Learning: Application To Nanofin And Annular Groove Phase Masks [40.11095094521714]
Metasurfaces offer a flexible framework for the manipulation of light properties in the realm of thin film optics.
This study aims to introduce a surrogate optimization framework for these devices.
The framework is applied to develop two kinds of vortex phase masks (VPMs) tailored for application in astronomical high-contrast imaging.
arXiv Detail & Related papers (2023-09-05T07:19:14Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - Interaction-Aware Sensitivity Analysis for Aerodynamic Optimization
Results using Information Theory [0.07614628596146601]
An important issue during an engineering design process is to develop an understanding which design parameters have the most influence on the performance.
We propose to use recently introduced information-theoretic methods and estimation algorithms to find the most influential input parameters in optimization results.
arXiv Detail & Related papers (2021-12-10T15:41:56Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
Computational design problems arise in a number of settings, from synthetic biology to computer architectures.
We propose a method that learns a model of the objective function that lower bounds the actual value of the ground-truth objective on out-of-distribution inputs.
COMs are simple to implement and outperform a number of existing methods on a wide range of MBO problems.
arXiv Detail & Related papers (2021-07-14T17:55:28Z) - Objective-Sensitive Principal Component Analysis for High-Dimensional
Inverse Problems [0.0]
We present a novel approach for adaptive, differentiable parameterization of large-scale random fields.
The developed technique is based on principal component analysis (PCA) but modifies a purely data-driven basis of principal components considering objective function behavior.
Three algorithms for optimal parameter decomposition are presented and applied to an objective of 2D synthetic history matching.
arXiv Detail & Related papers (2020-06-02T18:51:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.