論文の概要: Optimizing High-Dimensional Oblique Splits
- arxiv url: http://arxiv.org/abs/2503.14381v1
- Date: Tue, 18 Mar 2025 16:14:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-19 14:17:02.822573
- Title: Optimizing High-Dimensional Oblique Splits
- Title(参考訳): 高次元斜め分割の最適化
- Authors: Chien-Ming Chi,
- Abstract要約: 本稿では,高次元 $s$-sparse 斜め分割を $(vecw, vecwtopboldsymbolX_i) : iin 1,dots, n, vecw in mathbbRp, | vecw |_0 leq s $ から最適化する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Orthogonal-split trees perform well, but evidence suggests oblique splits can enhance their performance. This paper explores optimizing high-dimensional $s$-sparse oblique splits from $\{(\vec{w}, \vec{w}^{\top}\boldsymbol{X}_{i}) : i\in \{1,\dots, n\}, \vec{w} \in \mathbb{R}^p, \| \vec{w} \|_{2} = 1, \| \vec{w} \|_{0} \leq s \}$ for growing oblique trees, where $ s $ is a user-defined sparsity parameter. We establish a connection between SID convergence and $s_0$-sparse oblique splits with $s_0\ge 1$, showing that the SID function class expands as $s_0$ increases, enabling the capture of more complex data-generating functions such as the $s_0$-dimensional XOR function. Thus, $s_0$ represents the unknown potential complexity of the underlying data-generating function. Learning these complex functions requires an $s$-sparse oblique tree with $s \geq s_0$ and greater computational resources. This highlights a trade-off between statistical accuracy, governed by the SID function class size depending on $s_0$, and computational cost. In contrast, previous studies have explored the problem of SID convergence using orthogonal splits with $ s_0 = s = 1 $, where runtime was less critical. Additionally, we introduce a practical framework for oblique trees that integrates optimized oblique splits alongside orthogonal splits into random forests. The proposed approach is assessed through simulations and real-data experiments, comparing its performance against various oblique tree models.
- Abstract(参考訳): 直交スプリット木は良好に機能するが、斜め分割が性能を高めることが示唆されている。
本稿では、高次元 $s$-sparse 斜め分割を $\{(\vec{w}, \vec{w}^{\top}\boldsymbol{X}_{i}) : i\in \{1,\dots, n\}, \vec{w} \in \mathbb{R}^p, \| \vec{w} \|_{2} = 1, \| \vec{w} \|_{0} \leq s \}$から最適化する。
SID 収束と $s_0$-sparse 斜め分割と $s_0\ge 1$ との接続を確立し、SID 関数クラスが $s_0$ の増加に従って拡張されることを示し、$s_0$-dimensional XOR 関数のようなより複雑なデータ生成関数のキャプチャを可能にする。
したがって$s_0$は、基礎となるデータ生成関数の未知の潜在的な複雑さを表す。
これらの複雑な関数の学習には$s$sスパース斜め木と$s \geq s_0$とより大きな計算資源が必要である。
これは、SID関数のクラスサイズが$s_0$と計算コストに依存するという、統計的精度のトレードオフを強調している。
これとは対照的に、以前の研究では、s_0 = s = 1 $の直交分割を用いてSID収束の問題を探っている。
さらに,直交林に隣接して最適化された斜め分割を組み込んだ斜め樹の実践的枠組みを導入する。
提案手法はシミュレーションおよび実データ実験により評価し,その性能を各種斜め木モデルと比較した。
関連論文リスト
- Fast unsupervised ground metric learning with tree-Wasserstein distance [14.235762519615175]
教師なしの地上距離学習アプローチが導入されました
一つの有望な選択肢はワッサーシュタイン特異ベクトル(WSV)であり、特徴量とサンプルの間の最適な輸送距離を同時に計算する際に現れる。
木にサンプルや特徴を埋め込むことでWSV法を強化し,木-ワッサーシュタイン距離(TWD)を計算することを提案する。
論文 参考訳(メタデータ) (2024-11-11T23:21:01Z) - Simplifying and Understanding State Space Models with Diagonal Linear
RNNs [56.33053691749856]
本研究は、離散化ステップを解消し、バニラ対角線形RNNに基づくモデルを提案する。
概念的にはるかに単純であるにもかかわらず、$mathrmDLR$は以前提案したSSMと同じくらいのパフォーマンスを示す。
また、合成シーケンス・ツー・シーケンス・タスクのスイートによって、SSMとアテンションベースモデルの表現性も特徴付ける。
論文 参考訳(メタデータ) (2022-12-01T18:53:06Z) - Generalization Properties of Decision Trees on Real-valued and
Categorical Features [2.370481325034443]
データ分割の観点から二分決定木を再検討する。
我々は3種類の特徴を考察する: 実数値、分類的順序、分類的名目で、それぞれ異なる分割規則を持つ。
論文 参考訳(メタデータ) (2022-10-18T21:50:24Z) - Optimal Gradient Sliding and its Application to Distributed Optimization
Under Similarity [121.83085611327654]
積 $r:=p + q$, ここで$r$は$mu$-strong convex類似性である。
エージェントの通信やローカルコールにマスターされた問題を解決する方法を提案する。
提案手法は$mathcalO(sqrtL_q/mu)$法よりもはるかにシャープである。
論文 参考訳(メタデータ) (2022-05-30T14:28:02Z) - Empirical complexity of comparator-based nearest neighbor descent [0.0]
K$-nearest 隣り合うアルゴリズムの Java 並列ストリームの実装を示す。
Kullback-Leiblerの発散比較器による実験は、$K$-nearest近くの更新ラウンドの数が直径の2倍を超えないという予測を支持している。
論文 参考訳(メタデータ) (2022-01-30T21:37:53Z) - Fast Graph Sampling for Short Video Summarization using Gershgorin Disc
Alignment [52.577757919003844]
高速グラフサンプリングの最近の進歩を利用して,短い動画を複数の段落に効率よく要約する問題について検討する。
実験結果から,本アルゴリズムは最先端の手法と同等の映像要約を実現し,複雑さを大幅に低減した。
論文 参考訳(メタデータ) (2021-10-21T18:43:00Z) - Universal guarantees for decision tree induction via a higher-order
splitting criterion [16.832966312395126]
本アルゴリズムは,全対象関数に対して,一様分布に対して, -1,1n から -1,1$ の証明可能な保証を実現する。
我々の拡張の要点は、その属性の$f$と小さなサブセットの相関を考慮に入れた、新しい分割基準である。
我々のアルゴリズムは以下の保証を満たす: すべての対象関数 $f : -1,1n to -1,1$, sizes $sin mathbbN$, error parameters $epsilon$ に対して、決定を構成する。
論文 参考訳(メタデータ) (2020-10-16T21:20:45Z) - An Algorithm for Learning Smaller Representations of Models With Scarce
Data [0.0]
データセットが小さすぎるか、完全に代表的でない状況下で、二項分類問題を解くための欲求的アルゴリズムを提案する。
それは、ゆるやかな精度の制約、反復的なハイパーパラメータプルーニング手順、新しいデータを生成するために使われる関数といった訓練されたモデルに依存している。
論文 参考訳(メタデータ) (2020-10-15T19:17:51Z) - A Randomized Algorithm to Reduce the Support of Discrete Measures [79.55586575988292]
離散確率測度が$N$原子と$n$実数値関数の集合で成り立つと、元の$N$原子の$n+1$の部分集合で支えられる確率測度が存在する。
我々は、負の円錐によるバリセンターの簡単な幾何学的特徴付けを与え、この新しい測度を「グリード幾何学的サンプリング」によって計算するランダム化アルゴリズムを導出する。
次に、その性質を研究し、それを合成および実世界のデータにベンチマークして、$Ngg n$ regimeにおいて非常に有益であることを示す。
論文 参考訳(メタデータ) (2020-06-02T16:38:36Z) - On the Modularity of Hypernetworks [103.1147622394852]
構造化対象関数の場合、ハイパーネットワークにおけるトレーニング可能なパラメータの総数は、標準ニューラルネットワークのトレーニング可能なパラメータの数や埋め込み法よりも桁違いに小さいことを示す。
論文 参考訳(メタデータ) (2020-02-23T22:51:52Z) - Agnostic Q-learning with Function Approximation in Deterministic
Systems: Tight Bounds on Approximation Error and Sample Complexity [94.37110094442136]
本稿では,決定論的システムにおける関数近似を用いたQ$学習の問題について検討する。
もし$delta = Oleft(rho/sqrtdim_Eright)$なら、$Oleft(dim_Eright)$を使って最適なポリシーを見つけることができる。
論文 参考訳(メタデータ) (2020-02-17T18:41:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。