The Power of Context: How Multimodality Improves Image Super-Resolution
- URL: http://arxiv.org/abs/2503.14503v1
- Date: Tue, 18 Mar 2025 17:59:54 GMT
- Title: The Power of Context: How Multimodality Improves Image Super-Resolution
- Authors: Kangfu Mei, Hossein Talebi, Mojtaba Ardakani, Vishal M. Patel, Peyman Milanfar, Mauricio Delbracio,
- Abstract summary: Single-image super-resolution (SISR) remains challenging due to the inherent difficulty of recovering fine-grained details from low-resolution inputs.<n>We propose a novel approach that leverages the rich contextual information available in multiple modalities to learn a powerful generative prior for SISR.<n>Our model surpasses state-of-the-art generative SISR methods, achieving superior visual quality and fidelity.
- Score: 42.21009967392721
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Single-image super-resolution (SISR) remains challenging due to the inherent difficulty of recovering fine-grained details and preserving perceptual quality from low-resolution inputs. Existing methods often rely on limited image priors, leading to suboptimal results. We propose a novel approach that leverages the rich contextual information available in multiple modalities -- including depth, segmentation, edges, and text prompts -- to learn a powerful generative prior for SISR within a diffusion model framework. We introduce a flexible network architecture that effectively fuses multimodal information, accommodating an arbitrary number of input modalities without requiring significant modifications to the diffusion process. Crucially, we mitigate hallucinations, often introduced by text prompts, by using spatial information from other modalities to guide regional text-based conditioning. Each modality's guidance strength can also be controlled independently, allowing steering outputs toward different directions, such as increasing bokeh through depth or adjusting object prominence via segmentation. Extensive experiments demonstrate that our model surpasses state-of-the-art generative SISR methods, achieving superior visual quality and fidelity. See project page at https://mmsr.kfmei.com/.
Related papers
- Multi-Resolution Pathology-Language Pre-training Model with Text-Guided Visual Representation [35.50570174431677]
We propose a novel multi-resolution paradigm leveraging Whole Slide Images (WSIs) to extract histology patches at multiple resolutions.
We introduce visual-textual alignment at multiple resolutions as well as cross-resolution alignment to establish more effective text-guided visual representations.
Our model aims to capture a broader range of information, supported by novel loss functions, enriches feature representation, improves discriminative ability, and enhances generalization across different resolutions.
arXiv Detail & Related papers (2025-04-26T08:44:04Z) - CLIP-SR: Collaborative Linguistic and Image Processing for Super-Resolution [21.843398350371867]
Convolutional Neural Networks (CNNs) have advanced Image Super-Resolution (SR)<n>Most CNN-based methods rely solely on pixel-based transformations, leading to artifacts and blurring.<n>We introduce a multi-modal semantic enhancement approach that combines textual semantics with visual features.
arXiv Detail & Related papers (2024-12-16T09:50:09Z) - MMAR: Towards Lossless Multi-Modal Auto-Regressive Probabilistic Modeling [64.09238330331195]
We propose a novel Multi-Modal Auto-Regressive (MMAR) probabilistic modeling framework.
Unlike discretization line of method, MMAR takes in continuous-valued image tokens to avoid information loss.
We show that MMAR demonstrates much more superior performance than other joint multi-modal models.
arXiv Detail & Related papers (2024-10-14T17:57:18Z) - MFCLIP: Multi-modal Fine-grained CLIP for Generalizable Diffusion Face Forgery Detection [64.29452783056253]
The rapid development of photo-realistic face generation methods has raised significant concerns in society and academia.
Although existing approaches mainly capture face forgery patterns using image modality, other modalities like fine-grained noises and texts are not fully explored.
We propose a novel multi-modal fine-grained CLIP (MFCLIP) model, which mines comprehensive and fine-grained forgery traces across image-noise modalities.
arXiv Detail & Related papers (2024-09-15T13:08:59Z) - Coherent and Multi-modality Image Inpainting via Latent Space Optimization [61.99406669027195]
PILOT (intextbfPainting vtextbfIa textbfLatent textbfOptextbfTimization) is an optimization approach grounded on a novel textitsemantic centralization and textitbackground preservation loss.
Our method searches latent spaces capable of generating inpainted regions that exhibit high fidelity to user-provided prompts while maintaining coherence with the background.
arXiv Detail & Related papers (2024-07-10T19:58:04Z) - LVLM-empowered Multi-modal Representation Learning for Visual Place Recognition [17.388776062997813]
We try to build a discriminative global representations by fusing image data and text descriptions of the the visual scene.
The motivation is twofold: (1) Current Large Vision-Language Models (LVLMs) demonstrate extraordinary emergent capability in visual instruction following, and thus provide an efficient and flexible manner in generating text descriptions of images.
Although promising, leveraging LVLMs to build multi-modal VPR solutions remains challenging in efficient multi-modal fusion.
arXiv Detail & Related papers (2024-07-09T10:15:31Z) - Recognition-Guided Diffusion Model for Scene Text Image Super-Resolution [15.391125077873745]
Scene Text Image Super-Resolution (STISR) aims to enhance the resolution and legibility of text within low-resolution (LR) images.
Previous methods predominantly employ discriminative Convolutional Neural Networks (CNNs) augmented with diverse forms of text guidance.
We introduce RGDiffSR, a Recognition-Guided Diffusion model for scene text image Super-Resolution, which exhibits great generative diversity and fidelity even in challenging scenarios.
arXiv Detail & Related papers (2023-11-22T11:10:45Z) - Rethinking Super-Resolution as Text-Guided Details Generation [21.695227836312835]
We propose a Text-Guided Super-Resolution (TGSR) framework, which can effectively utilize the information from the text and image modalities.
The proposed TGSR could generate HR image details that match the text descriptions through a coarse-to-fine process.
arXiv Detail & Related papers (2022-07-14T01:46:38Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
This paper presents a holistic goal of maintaining spatially-precise high-resolution representations through the entire network.
We learn an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
Our approach achieves state-of-the-art results for a variety of image processing tasks, including defocus deblurring, image denoising, super-resolution, and image enhancement.
arXiv Detail & Related papers (2022-04-19T17:59:45Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z) - Multimodal Deep Unfolding for Guided Image Super-Resolution [23.48305854574444]
Deep learning methods rely on training data to learn an end-to-end mapping from a low-resolution input to a high-resolution output.
We propose a multimodal deep learning design that incorporates sparse priors and allows the effective integration of information from another image modality into the network architecture.
Our solution relies on a novel deep unfolding operator, performing steps similar to an iterative algorithm for convolutional sparse coding with side information.
arXiv Detail & Related papers (2020-01-21T14:41:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.