Policy Frameworks for Transparent Chain-of-Thought Reasoning in Large Language Models
- URL: http://arxiv.org/abs/2503.14521v1
- Date: Fri, 14 Mar 2025 19:54:18 GMT
- Title: Policy Frameworks for Transparent Chain-of-Thought Reasoning in Large Language Models
- Authors: Yihang Chen, Haikang Deng, Kaiqiao Han, Qingyue Zhao,
- Abstract summary: Chain-of-Thought (CoT) reasoning enhances large language models (LLMs) by decomposing complex problems into step-by-step solutions.<n>Current CoT disclosure policies vary widely across different models in visibility, API access, and pricing strategies, lacking a unified policy framework.<n>We propose a tiered-access policy framework that balances transparency, accountability, and security by tailoring CoT availability to academic, business, and general users.
- Score: 1.0088912103548195
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Chain-of-Thought (CoT) reasoning enhances large language models (LLMs) by decomposing complex problems into step-by-step solutions, improving performance on reasoning tasks. However, current CoT disclosure policies vary widely across different models in frontend visibility, API access, and pricing strategies, lacking a unified policy framework. This paper analyzes the dual-edged implications of full CoT disclosure: while it empowers small-model distillation, fosters trust, and enables error diagnosis, it also risks violating intellectual property, enabling misuse, and incurring operational costs. We propose a tiered-access policy framework that balances transparency, accountability, and security by tailoring CoT availability to academic, business, and general users through ethical licensing, structured reasoning outputs, and cross-tier safeguards. By harmonizing accessibility with ethical and operational considerations, this framework aims to advance responsible AI deployment while mitigating risks of misuse or misinterpretation.
Related papers
- Co-CoT: A Prompt-Based Framework for Collaborative Chain-of-Thought Reasoning [0.0]
We propose an Interactive Chain-of-Thought (CoT) Framework that enhances human-centered explainability and responsible AI usage.
The framework decomposes reasoning into clearly defined blocks that users can inspect, modify, and re-execute.
Ethical transparency is ensured through explicit metadata disclosure, built-in bias checkpoint functionality, and privacy-preserving safeguards.
arXiv Detail & Related papers (2025-04-23T20:48:09Z) - Are You Getting What You Pay For? Auditing Model Substitution in LLM APIs [60.881609323604685]
Large Language Models (LLMs) accessed via black-box APIs introduce a trust challenge.
Users pay for services based on advertised model capabilities.
providers may covertly substitute the specified model with a cheaper, lower-quality alternative to reduce operational costs.
This lack of transparency undermines fairness, erodes trust, and complicates reliable benchmarking.
arXiv Detail & Related papers (2025-04-07T03:57:41Z) - Regulating Ai In Financial Services: Legal Frameworks And Compliance Challenges [0.0]
Article examines the evolving landscape of artificial intelligence (AI) regulation in financial services.<n>It highlights how AI-driven processes, from fraud detection to algorithmic trading, offer efficiency gains yet introduce significant risks.<n>The study compares regulatory approaches across major jurisdictions such as the European Union, United States, and United Kingdom.
arXiv Detail & Related papers (2025-03-17T14:29:09Z) - Semantic Integrity Constraints: Declarative Guardrails for AI-Augmented Data Processing Systems [39.23499993745249]
We introduce Semantic Integrity Constraints (SICs) to govern and optimize semantic operators within AI-augmented data processing systems.
SICs integrate seamlessly into the relational model, allowing users to specify common classes of constraints.
Our work establishes SICs as a foundational framework for trustworthy, high-performance AI-augmented data processing.
arXiv Detail & Related papers (2025-03-01T19:59:25Z) - Towards Trustworthy Retrieval Augmented Generation for Large Language Models: A Survey [92.36487127683053]
Retrieval-Augmented Generation (RAG) is an advanced technique designed to address the challenges of Artificial Intelligence-Generated Content (AIGC)
RAG provides reliable and up-to-date external knowledge, reduces hallucinations, and ensures relevant context across a wide range of tasks.
Despite RAG's success and potential, recent studies have shown that the RAG paradigm also introduces new risks, including privacy concerns, adversarial attacks, and accountability issues.
arXiv Detail & Related papers (2025-02-08T06:50:47Z) - Deliberative Alignment: Reasoning Enables Safer Language Models [64.60765108418062]
We introduce Deliberative Alignment, a new paradigm that teaches the model safety specifications and trains it to explicitly recall and accurately reason over the specifications before answering.<n>We used this approach to align OpenAI's o-series models, and achieved highly precise adherence to OpenAI's safety policies, without requiring human-written chain-of-thoughts or answers.
arXiv Detail & Related papers (2024-12-20T21:00:11Z) - Ethical and Scalable Automation: A Governance and Compliance Framework for Business Applications [0.0]
This paper introduces a framework ensuring that AI must be ethical, controllable, viable, and desirable.<n>Different case studies validate this framework by integrating AI in both academic and practical environments.
arXiv Detail & Related papers (2024-09-25T12:39:28Z) - TRACE: TRansformer-based Attribution using Contrastive Embeddings in LLMs [50.259001311894295]
We propose a novel TRansformer-based Attribution framework using Contrastive Embeddings called TRACE.
We show that TRACE significantly improves the ability to attribute sources accurately, making it a valuable tool for enhancing the reliability and trustworthiness of large language models.
arXiv Detail & Related papers (2024-07-06T07:19:30Z) - Investigating the Role of Instruction Variety and Task Difficulty in Robotic Manipulation Tasks [50.75902473813379]
This work introduces a comprehensive evaluation framework that systematically examines the role of instructions and inputs in the generalisation abilities of such models.
The proposed framework uncovers the resilience of multimodal models to extreme instruction perturbations and their vulnerability to observational changes.
arXiv Detail & Related papers (2024-07-04T14:36:49Z) - Coordinated Flaw Disclosure for AI: Beyond Security Vulnerabilities [1.3225694028747144]
We propose a Coordinated Flaw Disclosure framework tailored to the complexities of machine learning (ML) issues.
Our framework introduces innovations such as extended model cards, dynamic scope expansion, an independent adjudication panel, and an automated verification process.
We argue that CFD could significantly enhance public trust in AI systems.
arXiv Detail & Related papers (2024-02-10T20:39:04Z) - Data Poisoning for In-context Learning [49.77204165250528]
In-context learning (ICL) has been recognized for its innovative ability to adapt to new tasks.
This paper delves into the critical issue of ICL's susceptibility to data poisoning attacks.
We introduce ICLPoison, a specialized attacking framework conceived to exploit the learning mechanisms of ICL.
arXiv Detail & Related papers (2024-02-03T14:20:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.