論文の概要: Tables Guide Vision: Learning to See the Heart through Tabular Data
- arxiv url: http://arxiv.org/abs/2503.14998v2
- Date: Mon, 06 Oct 2025 20:19:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-08 15:38:19.983246
- Title: Tables Guide Vision: Learning to See the Heart through Tabular Data
- Title(参考訳): テーブルガイド ビジョン: タブラルデータを通して心を見ることを学ぶ
- Authors: Marta Hasny, Maxime Di Folco, Keno Bressem, Julia Schnabel,
- Abstract要約: コンピュータビジョンの手法は、通常、ペア化されたモダリティを整列する同じイメージまたはマルチモーダル事前訓練戦略の拡張ビューに依存する。
これは、心疾患のリスクや患者の予後を評価する上で、人口統計学的および臨床的属性が重要な役割を果たす、心臓医学のような医療画像領域において特に重要である。
- 参考スコア(独自算出の注目度): 0.43748379918040853
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Contrastive learning methods in computer vision typically rely on augmented views of the same image or multimodal pretraining strategies that align paired modalities. However, these approaches often overlook semantic relationships between distinct instances, leading to false negatives when semantically similar samples are treated as negatives. This limitation is especially critical in medical imaging domains such as cardiology, where demographic and clinical attributes play a critical role in assessing disease risk and patient outcomes. We introduce a tabular-guided contrastive learning framework that leverages clinically relevant tabular data to identify patient-level similarities and construct more meaningful pairs, enabling semantically aligned representation learning without requiring joint embeddings across modalities. Additionally, we adapt the k-NN algorithm for zero-shot prediction to overcome the lack of zero-shot capability in unimodal representations. We demonstrate the strength of our methods using a large cohort of short-axis cardiac MR images and clinical attributes, where tabular data helps to more effectively distinguish between patient subgroups. Evaluation on downstream tasks, including fine-tuning, linear probing, and zero-shot prediction of cardiovascular artery diseases and cardiac phenotypes, shows that incorporating tabular data guidance yields stronger visual representations than conventional methods that rely solely on image augmentation or combined image-tabular embeddings. Further, we show that our method can generalize to natural images by evaluating it on a car advertisement dataset. The code will be available on GitHub upon acceptance.
- Abstract(参考訳): コンピュータビジョンにおける対照的な学習方法は、通常、ペア化されたモダリティを整列する同じイメージまたはマルチモーダル事前訓練戦略の拡張ビューに依存する。
しかしながら、これらのアプローチは、しばしば異なるインスタンス間の意味的関係を見落とし、意味的に類似したサンプルが負として扱われるときに偽陰性を引き起こす。
この制限は、心疾患のリスクや患者の予後を評価する上で、人口統計学的および臨床的属性が重要な役割を果たす、心臓医学のような医療画像領域において特に重要である。
患者レベルの類似性を識別し、より意味のあるペアを構築するために、臨床的に関係のある表型データを活用する表型誘導型コントラスト学習フレームワークを導入し、モダリティ間の結合埋め込みを必要とせず、意味的に整合した表現学習を可能にする。
さらに, ゼロショット予測にk-NNアルゴリズムを適用し, ゼロショット能力の欠如を克服する。
我々は, 短軸心MR画像と臨床特性のコホートを用いて, 本手法の強さを実証し, 表層データにより患者サブグループをより効果的に識別できることを示した。
細調整,線形探索,心血管疾患および心臓表現型のゼロショット予測などの下流タスクの評価では,表層データガイダンスを組み込むことで,画像増強や画像-タブラル埋め込みの併用に依存する従来の方法よりも強力な視覚表現が得られることが示されている。
さらに,カー広告データセット上で評価することで,自然画像に一般化できることを示す。
コードはGitHubで受け入れられる。
関連論文リスト
- Barttender: An approachable & interpretable way to compare medical imaging and non-imaging data [0.13406576408866772]
Barttenderは、画像の有効性と、病気の予測のようなタスクの非画像データの比較にディープラーニングを使用する解釈可能なフレームワークである。
本フレームワークでは,局所的な(サンプルレベルの)説明やグローバルな(人口レベルの)説明だけでなく,パフォーマンス測定による実用性の違いを評価することができる。
論文 参考訳(メタデータ) (2024-11-19T18:22:25Z) - Predicting Stroke through Retinal Graphs and Multimodal Self-supervised Learning [0.46835339362676565]
脳卒中の早期発見は介入に不可欠であり、信頼できるモデルを必要とする。
臨床情報とともに効率的な網膜像表現法を提案し,心血管の健康状態の包括的把握を試みた。
論文 参考訳(メタデータ) (2024-11-08T14:40:56Z) - Autoregressive Sequence Modeling for 3D Medical Image Representation [48.706230961589924]
本稿では, 自己回帰シーケンス事前学習フレームワークを用いて, 3次元医用画像表現を学習するための先駆的手法を提案する。
我々は,空間的,コントラスト的,意味的相関に基づく様々な3次元医用画像にアプローチし,トークンシーケンス内の相互接続された視覚トークンとして扱う。
論文 参考訳(メタデータ) (2024-09-13T10:19:10Z) - Contrastive Learning with Counterfactual Explanations for Radiology Report Generation [83.30609465252441]
放射線学レポート生成のためのtextbfCountertextbfFactual textbfExplanations-based framework (CoFE) を提案する。
反現実的な説明は、アルゴリズムによってなされた決定をどのように変えられるかを理解するための強力なツールとして、シナリオが何であるかを問うことによって役立ちます。
2つのベンチマークの実験では、反ファクト的な説明を活用することで、CoFEは意味的に一貫性があり、事実的に完全なレポートを生成することができる。
論文 参考訳(メタデータ) (2024-07-19T17:24:25Z) - MLIP: Enhancing Medical Visual Representation with Divergence Encoder
and Knowledge-guided Contrastive Learning [48.97640824497327]
本稿では、画像テキストのコントラスト学習を通じて、言語情報を視覚領域に統合するための案内信号として、ドメイン固有の医療知識を活用する新しいフレームワークを提案する。
我々のモデルには、設計した分散エンコーダによるグローバルコントラスト学習、局所トークン・知識・パッチアライメントコントラスト学習、知識誘導型カテゴリレベルのコントラスト学習、エキスパートナレッジによるコントラスト学習が含まれる。
特に、MLIPは、限られた注釈付きデータであっても最先端の手法を超越し、医療表現学習の進歩におけるマルチモーダル事前学習の可能性を強調している。
論文 参考訳(メタデータ) (2024-02-03T05:48:50Z) - Multimodal brain age estimation using interpretable adaptive
population-graph learning [58.99653132076496]
下流タスクに最適化された人口グラフ構造を学習するフレームワークを提案する。
注意機構は、画像と非画像の特徴のセットに重みを割り当てる。
グラフ構築において最も重要な注意重みを可視化することにより、グラフの解釈可能性を高める。
論文 参考訳(メタデータ) (2023-07-10T15:35:31Z) - Best of Both Worlds: Multimodal Contrastive Learning with Tabular and
Imaging Data [7.49320945341034]
単調エンコーダを学習するための自己指導型コントラスト学習フレームワークを提案する。
我々のソリューションは、2つの主要なコントラスト学習戦略であるSimCLRとSCARFを組み合わせています。
DVMカー広告データセットを用いて,自然画像へのアプローチの一般化可能性を示す。
論文 参考訳(メタデータ) (2023-03-24T15:44:42Z) - Lesion-based Contrastive Learning for Diabetic Retinopathy Grading from
Fundus Images [2.498907460918493]
糖尿病網膜症自動評価のための自己教師型フレームワーク,すなわち病変に基づくコントラスト学習を提案する。
提案フレームワークは,リニア評価と転送容量評価の両方の観点から,DRグレーディングを際立たせる。
論文 参考訳(メタデータ) (2021-07-17T16:30:30Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
マルチビューサブスペース学習のための深層コアテンションネットワークを提案する。
共通情報と相補情報の両方を敵意で抽出することを目的としている。
特に、新しいクロス再構成損失を使用し、ラベル情報を利用して潜在表現の構築を誘導する。
論文 参考訳(メタデータ) (2021-02-15T18:46:44Z) - Context Matters: Graph-based Self-supervised Representation Learning for
Medical Images [21.23065972218941]
2段階の自己監督型表現学習目標を備えた新しいアプローチを紹介します。
グラフニューラルネットワークを用いて、異なる解剖学的領域間の関係を組み込む。
我々のモデルは、画像中の臨床的に関連のある領域を識別できる。
論文 参考訳(メタデータ) (2020-12-11T16:26:07Z) - Dynamic Graph Correlation Learning for Disease Diagnosis with Incomplete
Labels [66.57101219176275]
胸部X線画像上の疾患診断は,多ラベル分類の課題である。
本稿では,異なる疾患間の相互依存を調査する新たな視点を提示する病的診断グラフ畳み込みネットワーク(DD-GCN)を提案する。
本手法は,相関学習のための動的隣接行列を用いた特徴写像上のグラフを初めて構築する手法である。
論文 参考訳(メタデータ) (2020-02-26T17:10:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。