論文の概要: Manifold Learning for Hyperspectral Images
- arxiv url: http://arxiv.org/abs/2503.15016v1
- Date: Wed, 19 Mar 2025 09:12:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-20 15:24:39.492124
- Title: Manifold Learning for Hyperspectral Images
- Title(参考訳): ハイパースペクトル画像のためのマニフォールド学習
- Authors: Fethi Harkat, Tiphaine Deuberet, Guillaume Gey, Valérie Perrier, Kévin Polisano,
- Abstract要約: 本論文では,一様多様体近似と投影を用いた隣接グラフの構築により,データセットトポロジを近似する手法を提案する。
このアプローチは、データ内の非線形相関を捕捉し、機械学習アルゴリズムの性能を大幅に改善する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Traditional feature extraction and projection techniques, such as Principal Component Analysis, struggle to adequately represent X-Ray Transmission (XRT) Multi-Energy (ME) images, limiting the performance of neural networks in decision-making processes. To address this issue, we propose a method that approximates the dataset topology by constructing adjacency graphs using the Uniform Manifold Approximation and Projection. This approach captures nonlinear correlations within the data, significantly improving the performance of machine learning algorithms, particularly in processing Hyperspectral Images (HSI) from X-ray transmission spectroscopy. This technique not only preserves the global structure of the data but also enhances feature separability, leading to more accurate and robust classification results.
- Abstract(参考訳): 主成分分析のような伝統的な特徴抽出と投影技術は、X線透過(XRT)マルチエネルギー(ME)画像の適切な表現に苦慮し、意思決定プロセスにおけるニューラルネットワークの性能を制限する。
この問題に対処するために,一様多様体近似と投影を用いた隣接グラフを構築することにより,データセットのトポロジを近似する手法を提案する。
このアプローチは、データ内の非線形相関を捕捉し、特にX線透過分光によるハイパースペクトル画像(HSI)の処理において、機械学習アルゴリズムの性能を大幅に改善する。
この技術はデータのグローバルな構造を保存するだけでなく、特徴分離性も向上し、より正確で堅牢な分類結果をもたらす。
関連論文リスト
- Deep Learning Based Speckle Filtering for Polarimetric SAR Images. Application to Sentinel-1 [51.404644401997736]
本稿では、畳み込みニューラルネットワークを用いて偏光SAR画像のスペックルを除去するための完全なフレームワークを提案する。
実験により,提案手法はスペックル低減と分解能保存の両方において例外的な結果をもたらすことが示された。
論文 参考訳(メタデータ) (2024-08-28T10:07:17Z) - Hierarchical Homogeneity-Based Superpixel Segmentation: Application to Hyperspectral Image Analysis [11.612069983959985]
ハイパースペクトルデータの処理に有効なマルチスケールスーパーピクセル法を提案する。
提案された階層的アプローチは、可変サイズの超画素を導くが、スペクトルの均一性は高い。
評価のために、スペクトルアンミックスおよび分類タスクにおける前処理ステップとして、同質性に基づく階層法を適用した。
論文 参考訳(メタデータ) (2024-07-22T01:20:32Z) - A Survey of Graph and Attention Based Hyperspectral Image Classification
Methods for Remote Sensing Data [5.1901440366375855]
ハイパースペクトルイメージング(HSI)の分類におけるディープラーニング技術の利用は急速に増加している。
最近の手法では、グラフ畳み込みネットワークの利用と、予測にノード機能を使用するユニークな機能についても検討されている。
論文 参考訳(メタデータ) (2023-10-16T00:42:25Z) - Multi-stage Deep Learning Artifact Reduction for Pallel-beam Computed Tomography [0.0]
トモグラフィーパイプライン投影,シノグラム,再構成の各段階で個別のディープラーニングモデルを組み込んで,データ駆動方式で特定のアーティファクトを局所的に処理する手法を提案する。
提案手法は,前段階からの出力と生データを後段に供給するバイパス接続を含み,エラー伝播のリスクを最小限に抑える。
論文 参考訳(メタデータ) (2023-09-01T14:40:25Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
単一ハイパースペクトル像超解像(単一HSI-SR)は、低分解能観測から高分解能ハイパースペクトル像を復元することを目的としている。
本稿では,1つのHSI-SRの繰り返し精製構造を持つESSA注目組込みトランスフォーマネットワークであるESSAformerを提案する。
論文 参考訳(メタデータ) (2023-07-26T07:45:14Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
条件付き可逆ニューラルネットワーク(cINN)に基づくドメイン転送手法を提案する。
提案手法は本質的に,その可逆的アーキテクチャによるサイクル一貫性を保証し,ネットワークトレーニングを最大限効率的に行うことができる。
提案手法は,2つの下流分類タスクにおいて,現実的なスペクトルデータの生成を可能にし,その性能を向上する。
論文 参考訳(メタデータ) (2023-03-17T18:00:27Z) - Graph Embedding via High Dimensional Model Representation for
Hyperspectral Images [9.228929858529678]
リモートセンシング画像の多様体構造を学習することは、モデリングおよび理解プロセスにおける最重要事項である。
ハイパスペクトル画像解析(HSI)に対処するためのマナーラーニング手法は優れた性能を示した。
この問題に対処する一般的な仮定は、高次元の入力空間と(典型的には低い)潜在空間の間の変換が線型であるということである。
提案手法は,その線形学習法とともに多様体学習法と比較し,代表的ハイパースペクトル画像の分類精度の観点から有望な性能を実現する。
論文 参考訳(メタデータ) (2021-11-29T16:42:15Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
伝播距離、位置誤差、部分的コヒーレンスにおける粗いパラメトリゼーションは、しばしば実験の生存性を脅かす。
最新のDeep Learningフレームワークは、セットアップの不整合を自律的に補正するために使用され、ポチコグラフィーの再構築の質が向上する。
我々は,elettra シンクロトロン施設のツインミックビームラインで取得した合成データセットと実データの両方でシステムをテストした。
論文 参考訳(メタデータ) (2021-05-18T10:15:17Z) - Spectral Response Function Guided Deep Optimization-driven Network for
Spectral Super-resolution [20.014293172511074]
本稿では、より深い空間スペクトルを持つ最適化駆動畳み込みニューラルネットワーク(CNN)を提案する。
自然およびリモートセンシング画像を含む2種類のデータセットに対する実験により,提案手法のスペクトル強調効果が示された。
論文 参考訳(メタデータ) (2020-11-19T07:52:45Z) - Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral
Imagery [79.69449412334188]
本稿では,最先端の残差学習をベースとした単一グレー/RGB画像の超解像化手法について検討する。
本稿では,空間情報とハイパースペクトルデータのスペクトル間の相関をフル活用するための空間スペクトル先行ネットワーク(SSPN)を提案する。
実験結果から,SSPSR法により高分解能高分解能高分解能画像の詳細が得られた。
論文 参考訳(メタデータ) (2020-05-18T14:25:50Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。