Euclid Quick Data Release (Q1). Active galactic nuclei identification using diffusion-based inpainting of Euclid VIS images
- URL: http://arxiv.org/abs/2503.15321v1
- Date: Wed, 19 Mar 2025 15:27:16 GMT
- Title: Euclid Quick Data Release (Q1). Active galactic nuclei identification using diffusion-based inpainting of Euclid VIS images
- Authors: Euclid Collaboration, G. Stevens, S. Fotopoulou, M. N. Bremer, T. Matamoro Zatarain, K. Jahnke, B. Margalef-Bentabol, M. Huertas-Company, M. J. Smith, M. Walmsley, M. Salvato, M. Mezcua, A. Paulino-Afonso, M. Siudek, M. Talia, F. Ricci, W. Roster, N. Aghanim, B. Altieri, S. Andreon, H. Aussel, C. Baccigalupi, M. Baldi, S. Bardelli, P. Battaglia, A. Biviano, A. Bonchi, E. Branchini, M. Brescia, J. Brinchmann, S. Camera, G. Cañas-Herrera, V. Capobianco, C. Carbone, J. Carretero, M. Castellano, G. Castignani, S. Cavuoti, K. C. Chambers, A. Cimatti, C. Colodro-Conde, G. Congedo, C. J. Conselice, L. Conversi, Y. Copin, A. Costille, F. Courbin, H. M. Courtois, M. Cropper, A. Da Silva, H. Degaudenzi, G. De Lucia, C. Dolding, H. Dole, M. Douspis, F. Dubath, X. Dupac, S. Dusini, S. Escoffier, M. Farina, S. Ferriol, K. George, C. Giocoli, B. R. Granett, A. Grazian, F. Grupp, S. V. H. Haugan, I. M. Hook, F. Hormuth, A. Hornstrup, P. Hudelot, M. Jhabvala, E. Keihänen, S. Kermiche, A. Kiessling, M. Kilbinger, B. Kubik, M. Kümmel, H. Kurki-Suonio, Q. Le Boulc'h, A. M. C. Le Brun, D. Le Mignant, P. B. Lilje, V. Lindholm, I. Lloro, G. Mainetti, D. Maino, E. Maiorano, O. Marggraf, M. Martinelli, N. Martinet, F. Marulli, R. Massey, S. Maurogordato, H. J. McCracken, E. Medinaceli, S. Mei, M. Melchior, M. Meneghetti, E. Merlin, G. Meylan, A. Mora, M. Moresco, L. Moscardini, R. Nakajima, C. Neissner, S. -M. Niemi, C. Padilla, S. Paltani, F. Pasian, K. Pedersen, W. J. Percival, V. Pettorino, G. Polenta, M. Poncet, L. A. Popa, L. Pozzetti, F. Raison, R. Rebolo, A. Renzi, J. Rhodes, G. Riccio, E. Romelli, M. Roncarelli, R. Saglia, A. G. Sánchez, D. Sapone, J. A. Schewtschenko, M. Schirmer, P. Schneider, T. Schrabback, A. Secroun, S. Serrano, P. Simon, C. Sirignano, G. Sirri, J. Skottfelt, L. Stanco, J. Steinwagner, P. Tallada-Crespí, A. N. Taylor, I. Tereno, S. Toft, R. Toledo-Moreo, F. Torradeflot, I. Tutusaus, L. Valenziano, J. Valiviita, T. Vassallo, G. Verdoes Kleijn, A. Veropalumbo, Y. Wang, J. Weller, A. Zacchei, G. Zamorani, F. M. Zerbi, I. A. Zinchenko, E. Zucca, V. Allevato, M. Ballardini, M. Bolzonella, E. Bozzo, C. Burigana, R. Cabanac, A. Cappi, J. A. Escartin Vigo, L. Gabarra, W. G. Hartley, J. Martín-Fleitas, S. Matthew, R. B. Metcalf, A. Pezzotta, M. Pöntinen, I. Risso, V. Scottez, M. Sereno, M. Tenti, M. Wiesmann, Y. Akrami, S. Alvi, I. T. Andika, S. Anselmi, M. Archidiacono, F. Atrio-Barandela, D. Bertacca, M. Bethermin, L. Bisigello, A. Blanchard, L. Blot, S. Borgani, M. L. Brown, S. Bruton, A. Calabro, F. Caro, T. Castro, F. Cogato, S. Davini, G. Desprez, A. Díaz-Sánchez, J. J. Diaz, S. Di Domizio, J. M. Diego, P. -A. Duc, A. Enia, Y. Fang, A. G. Ferrari, A. Finoguenov, A. Fontana, A. Franco, J. García-Bellido, T. Gasparetto, V. Gautard, E. Gaztanaga, F. Giacomini, F. Gianotti, M. Guidi, C. M. Gutierrez, A. Hall, S. Hemmati, H. Hildebrandt, J. Hjorth, J. J. E. Kajava, Y. Kang, V. Kansal, D. Karagiannis, C. C. Kirkpatrick, S. Kruk, L. Legrand, M. Lembo, F. Lepori, G. Leroy, J. Lesgourgues, L. Leuzzi, T. I. Liaudat, J. Macias-Perez, M. Magliocchetti, F. Mannucci, R. Maoli, C. J. A. P. Martins, L. Maurin, M. Miluzio, P. Monaco, G. Morgante, K. Naidoo, A. Navarro-Alsina, F. Passalacqua, K. Paterson, L. Patrizii, A. Pisani, D. Potter, S. Quai, M. Radovich, P. -F. Rocci, G. Rodighiero, S. Sacquegna, M. Sahlén, D. B. Sanders, E. Sarpa, A. Schneider, M. Schultheis, D. Sciotti, E. Sellentin, F. Shankar, L. C. Smith, K. Tanidis, G. Testera, R. Teyssier, S. Tosi, A. Troja, M. Tucci, C. Valieri, D. Vergani, G. Verza, N. A. Walton,
- Abstract summary: Diffusion models have been recently developed in the machine-learning literature to generate realistic-looking images of everyday objects.<n>We create a diffusion model trained on one million sources, without using any source pre-selection or labels.<n>We condition the prediction of the central light distribution by masking the central few pixels of each source and reconstruct the light according to the diffusion model.
- Score: 0.06757648045785866
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Light emission from galaxies exhibit diverse brightness profiles, influenced by factors such as galaxy type, structural features and interactions with other galaxies. Elliptical galaxies feature more uniform light distributions, while spiral and irregular galaxies have complex, varied light profiles due to their structural heterogeneity and star-forming activity. In addition, galaxies with an active galactic nucleus (AGN) feature intense, concentrated emission from gas accretion around supermassive black holes, superimposed on regular galactic light, while quasi-stellar objects (QSO) are the extreme case of the AGN emission dominating the galaxy. The challenge of identifying AGN and QSO has been discussed many times in the literature, often requiring multi-wavelength observations. This paper introduces a novel approach to identify AGN and QSO from a single image. Diffusion models have been recently developed in the machine-learning literature to generate realistic-looking images of everyday objects. Utilising the spatial resolving power of the Euclid VIS images, we created a diffusion model trained on one million sources, without using any source pre-selection or labels. The model learns to reconstruct light distributions of normal galaxies, since the population is dominated by them. We condition the prediction of the central light distribution by masking the central few pixels of each source and reconstruct the light according to the diffusion model. We further use this prediction to identify sources that deviate from this profile by examining the reconstruction error of the few central pixels regenerated in each source's core. Our approach, solely using VIS imaging, features high completeness compared to traditional methods of AGN and QSO selection, including optical, near-infrared, mid-infrared, and X-rays. [abridged]
Related papers
- CARL: Camera-Agnostic Representation Learning for Spectral Image Analysis [75.25966323298003]
Spectral imaging offers promising applications across diverse domains, including medicine and urban scene understanding.
variability in channel dimensionality and captured wavelengths among spectral cameras impede the development of AI-driven methodologies.
We introduce $textbfCARL$, a model for $textbfC$amera-$textbfA$gnostic $textbfR$esupervised $textbfL$ across RGB, multispectral, and hyperspectral imaging modalities.
arXiv Detail & Related papers (2025-04-27T13:06:40Z) - Galaxy spectroscopy without spectra: Galaxy properties from photometric images with conditional diffusion models [3.556281115019309]
We develop a generative AI method capable of predicting optical galaxy spectra from photometric broad-band images alone.
This work is the first attempt in the literature to infer velocity dispersion from photometric images.
We can predict the presence of an active galactic nucleus up to an accuracy of 82%.
arXiv Detail & Related papers (2024-06-26T08:49:51Z) - Identifying AGN host galaxies with convolutional neural networks [0.0]
We train a convolutional neural network (CNN) to distinguish AGN host galaxies from non-active galaxies.
We evaluate the CNN on 33,000 galaxies that are spectrally classified as composites.
arXiv Detail & Related papers (2022-12-15T15:04:40Z) - Understanding of the properties of neural network approaches for
transient light curve approximations [37.91290708320157]
This paper presents a search for the best-performing methods to approximate the observed light curves over time and wavelength.
Test datasets include simulated PLAsTiCC and real Zwicky Transient Facility Bright Transient Survey light curves of transients.
arXiv Detail & Related papers (2022-09-15T18:00:08Z) - Ultrabright and narrowband intra-fiber biphoton source at ultralow pump
power [51.961447341691]
Nonclassical photon sources of high brightness are key components of quantum communication technologies.
We here demonstrate the generation of narrowband, nonclassical photon pairs by employing spontaneous four-wave mixing in an optically-dense ensemble of cold atoms within a hollow-core fiber.
arXiv Detail & Related papers (2022-08-10T09:04:15Z) - Inferring Structural Parameters of Low-Surface-Brightness-Galaxies with
Uncertainty Quantification using Bayesian Neural Networks [70.80563014913676]
We show that a Bayesian Neural Network (BNN) can be used for the inference, with uncertainty, of such parameters from simulated low-surface-brightness galaxy images.
Compared to traditional profile-fitting methods, we show that the uncertainties obtained using BNNs are comparable in magnitude, well-calibrated, and the point estimates of the parameters are closer to the true values.
arXiv Detail & Related papers (2022-07-07T17:55:26Z) - Strong Lensing Source Reconstruction Using Continuous Neural Fields [3.604982738232833]
We introduce a method that uses continuous neural fields to non-parametrically reconstruct the complex morphology of a source galaxy.
We demonstrate the efficacy of our method through experiments on simulated data targeting high-resolution lensing images.
arXiv Detail & Related papers (2022-06-29T18:00:01Z) - Supernova Light Curves Approximation based on Neural Network Models [53.180678723280145]
Photometric data-driven classification of supernovae becomes a challenge due to the appearance of real-time processing of big data in astronomy.
Recent studies have demonstrated the superior quality of solutions based on various machine learning models.
We study the application of multilayer perceptron (MLP), bayesian neural network (BNN), and normalizing flows (NF) to approximate observations for a single light curve.
arXiv Detail & Related papers (2022-06-27T13:46:51Z) - Partial-Attribution Instance Segmentation for Astronomical Source
Detection and Deblending [0.24920602678297968]
We introduce a new approach called Partial-Attribution Instances that enables source detection and deblending in a manner tractable for deep learning models.
We provide a novel neural network implementation as a demonstration of the method.
arXiv Detail & Related papers (2022-01-12T21:59:13Z) - Predicting galaxy spectra from images with hybrid convolutional neural
networks [0.0]
We present a powerful new approach using a hybrid convolutional neural network with deconvolution instead of batch normalization.
The learned mapping between galaxy imaging and spectra will be transformative for future wide-field surveys.
arXiv Detail & Related papers (2020-09-25T16:16:16Z) - Hyperspectral-Multispectral Image Fusion with Weighted LASSO [68.04032419397677]
We propose an approach for fusing hyperspectral and multispectral images to provide high-quality hyperspectral output.
We demonstrate that the proposed sparse fusion and reconstruction provides quantitatively superior results when compared to existing methods on publicly available images.
arXiv Detail & Related papers (2020-03-15T23:07:56Z) - Interpreting Galaxy Deblender GAN from the Discriminator's Perspective [50.12901802952574]
This research focuses on behaviors of one of the network's major components, the Discriminator, which plays a vital role but is often overlooked.
We demonstrate that our method clearly reveals attention areas of the Discriminator when differentiating generated galaxy images from ground truth images.
arXiv Detail & Related papers (2020-01-17T04:05:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.