論文の概要: LuGo: an Enhanced Quantum Phase Estimation Implementation
- arxiv url: http://arxiv.org/abs/2503.15439v1
- Date: Wed, 19 Mar 2025 17:19:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-20 15:25:54.425548
- Title: LuGo: an Enhanced Quantum Phase Estimation Implementation
- Title(参考訳): LuGo: 量子位相推定の高速化
- Authors: Chao Lu, Muralikrishnan Gopalakrishanan Meena, Kalyana Chakravarthi Gottiparthi,
- Abstract要約: 本稿では,量子位相推定の性能向上を目的とした新しいフレームワーク,LuGoを紹介する。
LuGoは計算効率とハードウェア要件の両方で大幅に改善されている。
これらの利点により、LuGoはより効率的なQPEの実装の道を開いた。
- 参考スコア(独自算出の注目度): 2.45000454920926
- License:
- Abstract: Quantum Phase Estimation (QPE) is a cardinal algorithm in quantum computing that plays a crucial role in various applications, including cryptography, molecular simulation, and solving systems of linear equations. However, the standard implementation of QPE faces challenges related to time complexity and circuit depth, which limit its practicality for large-scale computations. We introduce LuGo, a novel framework designed to enhance the performance of QPE by reducing redundant circuit duplication, as well as parallelization techniques to achieve faster circuit generation and gate reduction. We validate the effectiveness of our framework by generating quantum linear solver circuits, which require both QPE and inverse QPE, to solve linear systems of equations. LuGo achieves significant improvements in both computational efficiency and hardware requirements while maintaining high accuracy. Compared to a standard QPE implementation, LuGo reduces time consumption to solve a $2^6\times 2^6$ system matrix by a factor of $50.68$ and over $31\times$ reduction of quantum gates and circuit depth, with no fidelity loss on an ideal quantum simulator. With these advantages, LuGo paves the way for more efficient implementations of QPE, enabling broader applications across several quantum computing domains.
- Abstract(参考訳): 量子位相推定(Quantum Phase Estimation、QPE)は、暗号、分子シミュレーション、線形方程式の解法など、様々な応用において重要な役割を果たす量子コンピューティングのアルゴリズムである。
しかし、QPEの標準的な実装は、時間複雑性と回路深度に関連する課題に直面し、大規模計算の実用性を制限する。
冗長回路の重複を減らし,QPEの性能を向上させるために設計された新しいフレームワークであるLuGoと,高速回路生成とゲート低減を実現する並列化技術を紹介する。
方程式の線形系を解くために、QPEと逆QPEの両方を必要とする量子線形解回路を生成することにより、我々のフレームワークの有効性を検証する。
LuGoは高い精度を維持しながら、計算効率とハードウェア要件の両方において大幅な改善を実現している。
標準的なQPE実装と比較して、LuGoは2^6\times 2^6$のシステム行列を50.68$、31\times$の量子ゲートと回路深さの削減で解き、理想的な量子シミュレータでは忠実さを損なわない。
これらの利点により、LuGoはより効率的なQPEの実装の道を開いた。
関連論文リスト
- Efficient Quantum Circuit Compilation for Near-Term Quantum Advantage [17.38734393793605]
本稿では,ターゲット量子回路をレンガ壁配置に近似的にコンパイルする手法を提案する。
この新しい回路設計は、実際の量子コンピュータで直接実装できる2量子CNOTゲートで構成されている。
論文 参考訳(メタデータ) (2025-01-13T15:04:39Z) - Quantum Multiplexer Simplification for State Preparation [0.7270112855088837]
本稿では,与えられた量子状態がサブステートに分解できるかどうかを検出するアルゴリズムを提案する。
単純化は、量子多重化器の制御をなくすことによって行われる。
深度とCNOTゲート数の観点からは,本手法は文献の手法と競合する。
論文 参考訳(メタデータ) (2024-09-09T13:53:02Z) - Subspace-Based Local Compilation of Variational Quantum Circuits for Large-Scale Quantum Many-Body Simulation [0.0]
本稿では,時間進化演算子をコンパイルするためのハイブリッド量子古典アルゴリズムを提案する。
精度を保ちながら、トロッタライゼーションに比べて95%の回路深さの低減を実現している。
我々は,LSVQCを用いて,短期量子コンピューティングアーキテクチャ上での量子シミュレーションの実行に必要なゲート数を推定する。
論文 参考訳(メタデータ) (2024-07-19T09:50:01Z) - A multiple-circuit approach to quantum resource reduction with application to the quantum lattice Boltzmann method [39.671915199737846]
量子格子ボルツマン法(QLBM)における非圧縮性ナビエ-ストークス方程式の多重回路アルゴリズムを提案する。
提案法は2次元蓋駆動キャビティフローに対して検証および実証を行った。
論文 参考訳(メタデータ) (2024-01-20T15:32:01Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - QArchSearch: A Scalable Quantum Architecture Search Package [1.725192300740999]
バックエンドとして textttQTensor ライブラリを備えた,AI ベースの量子アーキテクチャ検索パッケージである textttQArchSearch を提示する。
探索パッケージは、探索を大規模量子回路に効率よくスケールでき、異なる量子アプリケーションのためのより複雑なモデルを探索できることを示す。
論文 参考訳(メタデータ) (2023-10-11T20:00:33Z) - Accelerating the training of single-layer binary neural networks using
the HHL quantum algorithm [58.720142291102135]
Harrow-Hassidim-Lloyd (HHL) の量子力学的実装から有用な情報が抽出可能であることを示す。
しかし,本論文では,HHLの量子力学的実装から有用な情報を抽出し,古典的側面における解を見つける際の複雑性を低減することを目的としている。
論文 参考訳(メタデータ) (2022-10-23T11:58:05Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
本稿では,グラフニューラルネットワーク(GNN)と組み合わせた強化学習(RL)手法を提案する。
この問題は、巨大な検索スペース、重い尾の報酬分布、そして困難なクレジット割り当てのために非常に難しい。
GNNを基本方針として利用するRLエージェントが,これらの課題にどのように対処できるかを示す。
論文 参考訳(メタデータ) (2022-04-18T21:45:13Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
我々は、様々なレベルの接続性を持つハードウェアアーキテクチャのための最適化回路により、期待されるリソース要求のスケーリングを定量化する。
問題の大きさと問題グラフの次数で指数関数的に増大する。
これらの問題は、ハードウェア接続性の向上や、より少ない回路層で高い性能を達成するQAOAの変更によって緩和される可能性がある。
論文 参考訳(メタデータ) (2022-01-06T21:02:30Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。