論文の概要: Navigating MLOps: Insights into Maturity, Lifecycle, Tools, and Careers
- arxiv url: http://arxiv.org/abs/2503.15577v1
- Date: Wed, 19 Mar 2025 13:20:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-21 16:35:27.727845
- Title: Navigating MLOps: Insights into Maturity, Lifecycle, Tools, and Careers
- Title(参考訳): MLOpsをナビゲートする - 成熟度、ライフサイクル、ツール、キャリアへの洞察
- Authors: Jasper Stone, Raj Patel, Farbod Ghiasi, Sudip Mittal, Shahram Rahimi,
- Abstract要約: 本稿では,Large Language Model Operations(LLMOps)をさらに取り入れた,MLOpsライフサイクル統合フレームワークを紹介する。
さまざまな成熟度レベルでMLOpsの採用に関連する重要な役割、ツール、コストを概説する。
標準化されたフレームワークを提供することで、MLOpsを効果的に実装するために必要なリソースを明確に定義し、割り当てすることを支援します。
- 参考スコア(独自算出の注目度): 4.835091081509403
- License:
- Abstract: The adoption of Machine Learning Operations (MLOps) enables automation and reliable model deployments across industries. However, differing MLOps lifecycle frameworks and maturity models proposed by industry, academia, and organizations have led to confusion regarding standard adoption practices. This paper introduces a unified MLOps lifecycle framework, further incorporating Large Language Model Operations (LLMOps), to address this gap. Additionally, we outlines key roles, tools, and costs associated with MLOps adoption at various maturity levels. By providing a standardized framework, we aim to help organizations clearly define and allocate the resources needed to implement MLOps effectively.
- Abstract(参考訳): 機械学習オペレーション(MLOps)の採用により、業界全体での自動化と信頼性の高いモデル展開が可能になる。
しかし、業界、アカデミック、組織によって提案されたMLOpsライフサイクルフレームワークと成熟度モデルが異なるため、標準採用プラクティスに関する混乱が生じている。
本稿では、このギャップに対処するために、Large Language Model Operations(LLMOps)をさらに取り入れた統合MLOpsライフサイクルフレームワークを紹介する。
さらに、さまざまな成熟度レベルでのMLOpsの採用に関連する重要な役割、ツール、コストについても概説しています。
標準化されたフレームワークを提供することで、MLOpsを効果的に実装するために必要なリソースを明確に定義し、割り当てすることを支援します。
関連論文リスト
- Practical Considerations for Agentic LLM Systems [5.455744338342196]
本稿では、確立されたアプリケーションパラダイムの文脈における研究コミュニティからの実行可能な洞察と考察について述べる。
すなわち、アプリケーション中心の文献における一般的な実践に基づいて、関連する研究成果を4つの幅広いカテゴリ – プランニング、メモリツール、コントロールフロー – に位置づける。
論文 参考訳(メタデータ) (2024-12-05T11:57:49Z) - MALMM: Multi-Agent Large Language Models for Zero-Shot Robotics Manipulation [52.739500459903724]
大規模言語モデル(LLM)は、ロボティクスの操作やナビゲーションなど、さまざまな領域にまたがる優れた計画能力を示している。
特殊なLLMエージェント間で高レベル計画および低レベル制御コード生成を分散する新しいマルチエージェントLLMフレームワークを提案する。
長軸タスクを含む9つのRLBenchタスクに対するアプローチを評価し、ゼロショット環境でロボット操作を解く能力を実証した。
論文 参考訳(メタデータ) (2024-11-26T17:53:44Z) - LLM-based Multi-Agent Systems: Techniques and Business Perspectives [26.74974842247119]
マルチモーダル (multi-modal) な大規模言語モデルの時代において、ほとんどの操作プロセスは LLM エージェントを使って再構成および再生することができる。
発達の自然なトレンドとして、呼び出しツールは自律的なエージェントになりつつあるため、完全なインテリジェントシステムはLLMベースのマルチエージェントシステム(LaMAS)であることが判明した。
従来の単一LLMエージェントシステムと比較して、LaMASは、動的タスク分解と有機的特殊化の利点、システム変更の柔軟性の向上、および、各エンティティに対する収益化の実現可能性を有する。
論文 参考訳(メタデータ) (2024-11-21T11:36:29Z) - Embodied Agent Interface: Benchmarking LLMs for Embodied Decision Making [85.24399869971236]
我々は,大規模言語モデル(LLM)を具体的意思決定のために評価することを目指している。
既存の評価は最終的な成功率にのみ依存する傾向がある。
本稿では,様々なタスクの形式化を支援する汎用インタフェース (Embodied Agent Interface) を提案する。
論文 参考訳(メタデータ) (2024-10-09T17:59:00Z) - Experimentation, deployment and monitoring Machine Learning models: Approaches for applying MLOps [0.0]
MLOpsの規律は、機械学習モデルのライフサイクルを自動化するソリューションとして現れます。
本稿では,MLOps技術とその最も多様な応用の理解に寄与する。
論文 参考訳(メタデータ) (2024-08-20T18:11:17Z) - A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.52259252807191]
MLLM(Multimodal Large Language Models)は、単一のモダリティシステムの能力を超えた現実世界のアプリケーションの複雑さに対処する。
本稿では,自然言語,視覚,音声などのマルチモーダルタスクにおけるMLLMの応用を体系的に整理する。
論文 参考訳(メタデータ) (2024-08-02T15:14:53Z) - Self-MoE: Towards Compositional Large Language Models with Self-Specialized Experts [49.950419707905944]
本稿では,モノリシックLLMを,自己専門化の専門家による構成的,モジュール的なシステムに変換するアプローチであるSelf-MoEを紹介する。
提案手法は, 自己生成合成データを用いて, 専門家モジュールを構成する自己特殊化を利用する。
本研究は, モジュール性の重要性, マルチベースLCMへの適用性, 効率的でスケーラブルで適応可能なシステムの実現における自己改善の可能性を明らかにするものである。
論文 参考訳(メタデータ) (2024-06-17T19:06:54Z) - Automating the Training and Deployment of Models in MLOps by Integrating Systems with Machine Learning [5.565764053895849]
実世界の応用における機械学習の重要性を紹介し、MLOpsの台頭を探求する。
MLOpsの進化と従来のソフトウェア開発手法との関係を概観することにより,既存のMLOpsが直面する問題を機械学習に統合し,生産性を向上させる方法を提案する。
論文 参考訳(メタデータ) (2024-05-16T05:36:28Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
大規模言語モデル(LLM)エージェントはスタンドアロンのLLMの機能を大幅に拡張する。
本稿では、上記の機能をプランナー、呼び出し元、要約器に分解する新しい手法を提案する。
このモジュール化されたフレームワークは、個々の更新と、それぞれの機能を構築するための小さなLLMの潜在的な使用を容易にする。
論文 参考訳(メタデータ) (2024-01-14T16:17:07Z) - Online Advertisements with LLMs: Opportunities and Challenges [51.96140910798771]
本稿では,オンライン広告システムにおけるLarge Language Models(LLM)の活用の可能性について検討する。
提案手法は,LLM広告の修正,入札,予測,オークションモジュールから構成される。
論文 参考訳(メタデータ) (2023-11-11T02:13:32Z) - MLOps: A Step Forward to Enterprise Machine Learning [0.0]
この研究は、MLOps、そのメリット、困難、進化、および重要な基盤技術に関する詳細なレビューを提示する。
MLOpsワークフローは、モデルとデータ探索とデプロイメントの両方に必要なさまざまなツールとともに、詳細に説明されている。
この記事では、さまざまな成熟度の高い自動パイプラインを使用して、MLプロジェクトのエンドツーエンド生産にも光を当てます。
論文 参考訳(メタデータ) (2023-05-27T20:44:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。