MobiFuse: Learning Universal Human Mobility Patterns through Cross-domain Data Fusion
- URL: http://arxiv.org/abs/2503.15779v1
- Date: Thu, 20 Mar 2025 01:41:28 GMT
- Title: MobiFuse: Learning Universal Human Mobility Patterns through Cross-domain Data Fusion
- Authors: Haoxuan Ma, Xishun Liao, Yifan Liu, Qinhua Jiang, Chris Stanford, Shangqing Cao, Jiaqi Ma,
- Abstract summary: We propose a cross-domain data fusion framework that integrates data of distinct nature andtemporal resolution.<n>This framework is demonstrated through two case studies in Los Angeles (LA) and Egypt.<n>Large-scale traffic simulations for LA County based on the generated synthetic demand align well with observed traffic.
- Score: 11.332722237426987
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human mobility modeling is critical for urban planning and transportation management, yet existing datasets often lack the resolution and semantic richness required for comprehensive analysis. To address this, we proposed a cross-domain data fusion framework that integrates multi-modal data of distinct nature and spatio-temporal resolution, including geographical, mobility, socio-demographic, and traffic information, to construct a privacy-preserving and semantically enriched human travel trajectory dataset. This framework is demonstrated through two case studies in Los Angeles (LA) and Egypt, where a domain adaptation algorithm ensures its transferability across diverse urban contexts. Quantitative evaluation shows that the generated synthetic dataset accurately reproduces mobility patterns observed in empirical data. Moreover, large-scale traffic simulations for LA County based on the generated synthetic demand align well with observed traffic. On California's I-405 corridor, the simulation yields a Mean Absolute Percentage Error of 5.85% for traffic volume and 4.36% for speed compared to Caltrans PeMS observations.
Related papers
- Collaborative Imputation of Urban Time Series through Cross-city Meta-learning [54.438991949772145]
We propose a novel collaborative imputation paradigm leveraging meta-learned implicit neural representations (INRs)<n>We then introduce a cross-city collaborative learning scheme through model-agnostic meta learning.<n>Experiments on a diverse urban dataset from 20 global cities demonstrate our model's superior imputation performance and generalizability.
arXiv Detail & Related papers (2025-01-20T07:12:40Z) - Reconstructing Human Mobility Pattern: A Semi-Supervised Approach for Cross-Dataset Transfer Learning [10.864774173935535]
We have developed a model that reconstructs and learns human mobility patterns by focusing on semantic activity chains.
We introduce a semi-supervised iterative transfer learning algorithm to adapt models to diverse geographical contexts.
arXiv Detail & Related papers (2024-10-03T20:29:56Z) - IBB Traffic Graph Data: Benchmarking and Road Traffic Prediction Model [0.24999074238880487]
Road traffic congestion prediction is a crucial component of intelligent transportation systems.
IBB Traffic graph dataset covers the sensor data collected at 2451 distinct locations.
We propose a novel Road Traffic Prediction Model that strengthens temporal links through feature engineering.
arXiv Detail & Related papers (2024-08-02T05:23:19Z) - Urban Traffic Forecasting with Integrated Travel Time and Data Availability in a Conformal Graph Neural Network Framework [0.6554326244334868]
State-of-the-art models often struggle to consider the data in the best way possible.
We propose a novel framework to incorporate travel times between stations into a weighted adjacency matrix of a Graph Neural Network architecture.
arXiv Detail & Related papers (2024-07-17T01:11:07Z) - Reconsidering utility: unveiling the limitations of synthetic mobility data generation algorithms in real-life scenarios [49.1574468325115]
We evaluate the utility of five state-of-the-art synthesis approaches in terms of real-world applicability.
We focus on so-called trip data that encode fine granular urban movements such as GPS-tracked taxi rides.
One model fails to produce data within reasonable time and another generates too many jumps to meet the requirements for map matching.
arXiv Detail & Related papers (2024-07-03T16:08:05Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
Long-term urban mobility predictions play a crucial role in the effective management of urban facilities and services.
Traditionally, urban mobility data has been structured as videos, treating longitude and latitude as fundamental pixels.
In our research, we introduce a fresh perspective on urban mobility prediction.
Instead of oversimplifying urban mobility data as traditional video data, we regard it as a complex time series.
arXiv Detail & Related papers (2023-12-04T07:39:05Z) - Reinforcement Learning with Human Feedback for Realistic Traffic
Simulation [53.85002640149283]
Key element of effective simulation is the incorporation of realistic traffic models that align with human knowledge.
This study identifies two main challenges: capturing the nuances of human preferences on realism and the unification of diverse traffic simulation models.
arXiv Detail & Related papers (2023-09-01T19:29:53Z) - Traffic Prediction with Transfer Learning: A Mutual Information-based
Approach [11.444576186559487]
We propose TrafficTL, a cross-city traffic prediction approach that uses big data from other cities to aid data-scarce cities in traffic prediction.
TrafficTL is evaluated by comprehensive case studies on three real-world datasets and outperforms the state-of-the-art baseline by around 8 to 25 percent.
arXiv Detail & Related papers (2023-03-13T15:27:07Z) - Multi-Graph Fusion Networks for Urban Region Embedding [40.97361959702485]
Learning embeddings for urban regions from human mobility data can reveal the functionality of regions, and then enables correlated but distinct tasks such as crime prediction.
We propose multi-graph fusion networks (MGFN) to enable the cross domain prediction tasks.
Experimental results demonstrate that the proposed MGFN outperforms the state-of-the-art methods by up to 12.35%.
arXiv Detail & Related papers (2022-01-24T15:48:50Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
We organize an experimental campaign with video measurement in an area within the urban network of Zurich, Switzerland.
We focus on capturing the traffic state in terms of traffic flow and travel times by ensuring measurements from established thermal cameras.
We propose a simple yet efficient Multiple Linear Regression (MLR) model to estimate travel times with fusion of various data sources.
arXiv Detail & Related papers (2021-08-02T08:13:57Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
Control of traffic signals is fundamental and critical to alleviate traffic congestion in urban areas.
Because of the high complexity of modelling the problem, experimental settings of current works are often inconsistent.
We propose a novel and strong baseline model based on deep reinforcement learning with the encoder-decoder structure.
arXiv Detail & Related papers (2021-01-24T03:55:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.