FedSAF: A Federated Learning Framework for Enhanced Gastric Cancer Detection and Privacy Preservation
- URL: http://arxiv.org/abs/2503.15870v1
- Date: Thu, 20 Mar 2025 05:48:48 GMT
- Title: FedSAF: A Federated Learning Framework for Enhanced Gastric Cancer Detection and Privacy Preservation
- Authors: Yuxin Miao, Xinyuan Yang, Hongda Fan, Yichun Li, Yishu Hong, Xiechen Guo, Ali Braytee, Weidong Huang, Ali Anaissi,
- Abstract summary: Gastric cancer is one of the most commonly diagnosed cancers and has a high mortality rate.<n>Due to limited medical resources, developing machine learning models for gastric cancer recognition provides an efficient solution for medical institutions.<n>Such models typically require large sample sizes for training and testing, which can challenge patient privacy.<n> Federated learning offers an effective alternative by enabling model training across multiple institutions without sharing sensitive patient data.
- Score: 0.686541828730325
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Gastric cancer is one of the most commonly diagnosed cancers and has a high mortality rate. Due to limited medical resources, developing machine learning models for gastric cancer recognition provides an efficient solution for medical institutions. However, such models typically require large sample sizes for training and testing, which can challenge patient privacy. Federated learning offers an effective alternative by enabling model training across multiple institutions without sharing sensitive patient data. This paper addresses the limited sample size of publicly available gastric cancer data with a modified data processing method. This paper introduces FedSAF, a novel federated learning algorithm designed to improve the performance of existing methods, particularly in non-independent and identically distributed (non-IID) data scenarios. FedSAF incorporates attention-based message passing and the Fisher Information Matrix to enhance model accuracy, while a model splitting function reduces computation and transmission costs. Hyperparameter tuning and ablation studies demonstrate the effectiveness of this new algorithm, showing improvements in test accuracy on gastric cancer datasets, with FedSAF outperforming existing federated learning methods like FedAMP, FedAvg, and FedProx. The framework's robustness and generalization ability were further validated across additional datasets (SEED, BOT, FashionMNIST, and CIFAR-10), achieving high performance in diverse environments.
Related papers
- Multi-Omics Fusion with Soft Labeling for Enhanced Prediction of Distant Metastasis in Nasopharyngeal Carcinoma Patients after Radiotherapy [4.971538849792411]
One of the challenges encountered in the integration of omics data is the presence of unpredictability.<n>This study aims to develop a fusion methodology that mitigates the disparities inherent in omics data.
arXiv Detail & Related papers (2025-02-12T05:26:59Z) - Robust and Explainable Framework to Address Data Scarcity in Diagnostic Imaging [6.744847405966574]
We introduce a novel ensemble framework called Efficient Transfer and Self-supervised Learning based Ensemble Framework' (ETSEF)
ETSEF leverages features from multiple pre-trained deep learning models to efficiently learn powerful representations from a limited number of data samples.
Five independent medical imaging tasks, including endoscopy, breast cancer, monkeypox, brain tumour, and glaucoma detection, were tested to demonstrate ETSEF's effectiveness and robustness.
arXiv Detail & Related papers (2024-07-09T05:48:45Z) - Distributed Federated Learning-Based Deep Learning Model for Privacy MRI Brain Tumor Detection [11.980634373191542]
Distributed training can facilitate the processing of large medical image datasets, and improve the accuracy and efficiency of disease diagnosis.
This paper presents an innovative approach to medical image classification, leveraging Federated Learning (FL) to address the dual challenges of data privacy and efficient disease diagnosis.
arXiv Detail & Related papers (2024-04-15T09:07:19Z) - Revolutionizing Disease Diagnosis: A Microservices-Based Architecture
for Privacy-Preserving and Efficient IoT Data Analytics Using Federated
Learning [0.0]
Deep learning-based disease diagnosis applications are essential for accurate diagnosis at various disease stages.
By positioning processing resources closer to the device, a distributed computing paradigm has the potential to revolutionize disease diagnosis.
This study proposes a federated-based approach for IoT data analytics systems to satisfy privacy and performance requirements.
arXiv Detail & Related papers (2023-08-27T06:31:43Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - Federated Learning with Research Prototypes for Multi-Center MRI-based
Detection of Prostate Cancer with Diverse Histopathology [3.8613414331251423]
We introduce a flexible federated learning framework for cross-site training, validation, and evaluation of deep prostate cancer detection algorithms.
Our results show increases in prostate cancer detection and classification accuracy using a specialized neural network model and diverse prostate biopsy data.
We open-source our FLtools system, which can be easily adapted to other deep learning projects for medical imaging.
arXiv Detail & Related papers (2022-06-11T21:28:17Z) - When Accuracy Meets Privacy: Two-Stage Federated Transfer Learning
Framework in Classification of Medical Images on Limited Data: A COVID-19
Case Study [77.34726150561087]
COVID-19 pandemic has spread rapidly and caused a shortage of global medical resources.
CNN has been widely utilized and verified in analyzing medical images.
arXiv Detail & Related papers (2022-03-24T02:09:41Z) - Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited
Data [125.7135706352493]
Generative adversarial networks (GANs) typically require ample data for training in order to synthesize high-fidelity images.
Recent studies have shown that training GANs with limited data remains formidable due to discriminator overfitting.
This paper introduces a novel strategy called Adaptive Pseudo Augmentation (APA) to encourage healthy competition between the generator and the discriminator.
arXiv Detail & Related papers (2021-11-12T18:13:45Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - FLOP: Federated Learning on Medical Datasets using Partial Networks [84.54663831520853]
COVID-19 Disease due to the novel coronavirus has caused a shortage of medical resources.
Different data-driven deep learning models have been developed to mitigate the diagnosis of COVID-19.
The data itself is still scarce due to patient privacy concerns.
We propose a simple yet effective algorithm, named textbfFederated textbfL textbfon Medical datasets using textbfPartial Networks (FLOP)
arXiv Detail & Related papers (2021-02-10T01:56:58Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
We present a deep learning framework that enables robust modeling in challenging scenarios.
Our results show that using 85% lesser labeled data, we can build predictive models that match the performance of classifiers trained in a large-scale data setting.
arXiv Detail & Related papers (2020-05-03T02:36:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.