Speeding up design and making to reduce time-to-project and time-to-market: an AI-Enhanced approach in engineering education
- URL: http://arxiv.org/abs/2503.16307v1
- Date: Thu, 20 Mar 2025 16:32:13 GMT
- Title: Speeding up design and making to reduce time-to-project and time-to-market: an AI-Enhanced approach in engineering education
- Authors: Giovanni Adorni, Daniele Grosso,
- Abstract summary: This paper explores the integration of AI tools, such as ChatGPT and GitHub Copilot, in the Software Architecture for Embedded Systems course.<n>Results demon-started enhanced problem-solving, faster development, and more sophisticated outcomes, with AI augmenting but not replacing human decision-making.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper explores the integration of AI tools, such as ChatGPT and GitHub Copilot, in the Software Architecture for Embedded Systems course. AI-supported workflows enabled students to rapidly prototype complex projects, emphasizing real-world applications like SLAM robotics. Results demon-started enhanced problem-solving, faster development, and more sophisticated outcomes, with AI augmenting but not replacing human decision-making.
Related papers
- Towards practicable Machine Learning development using AI Engineering Blueprints [0.8654896256058138]
Small and medium-sized enterprises (SMEs) face challenges when implementing AI in their products or processes.
This paper proposes a research plan designed to develop blueprints for the creation of proprietary machine learning (ML) models.
arXiv Detail & Related papers (2025-04-08T19:28:05Z) - AI2Agent: An End-to-End Framework for Deploying AI Projects as Autonomous Agents [15.802600809497097]
This paper introduces AI2Agent, an end-to-end framework that automates AI project deployment through guideline-driven execution.
We conducted experiments on 30 AI deployment cases, covering TTS, text-to-image generation, image editing, and other AI applications.
Results show that AI2Agent significantly reduces deployment time and improves success rates.
arXiv Detail & Related papers (2025-03-31T10:58:34Z) - Challenges and Paths Towards AI for Software Engineering [55.95365538122656]
We discuss progress in AI for software engineering in threefold manner.
First, we provide a structured taxonomy of concrete tasks in AI for software engineering.
Second, we outline several key bottlenecks that limit current approaches.
arXiv Detail & Related papers (2025-03-28T17:17:57Z) - AIDE: AI-Driven Exploration in the Space of Code [6.401493599308353]
We introduce AI-Driven Exploration (AIDE), a machine learning engineering agent powered by large language models (LLMs)<n>AIDE frames machine learning engineering as a code optimization problem, and formulates trial-and-error as a tree search in the space of potential solutions.<n>By strategically reusing and refining promising solutions, AIDE effectively trades computational resources for enhanced performance.
arXiv Detail & Related papers (2025-02-18T18:57:21Z) - Develop AI Agents for System Engineering in Factorio [1.5824959429406713]
This position paper advocates for training and evaluating AI agents' system engineering abilities through automation-oriented sandbox games.<n>By directing research efforts in this direction, we can equip AI agents with the specialized reasoning and long-horizon planning necessary to design, maintain, and optimize tomorrow's most demanding engineering projects.
arXiv Detail & Related papers (2025-02-03T16:26:17Z) - A Retrospective on the Robot Air Hockey Challenge: Benchmarking Robust, Reliable, and Safe Learning Techniques for Real-world Robotics [53.33976793493801]
We organized the Robot Air Hockey Challenge at the NeurIPS 2023 conference.
We focus on practical challenges in robotics, such as the sim-to-real gap, low-level control issues, safety problems, real-time requirements, and the limited availability of real-world data.
Results show that solutions combining learning-based approaches with prior knowledge outperform those relying solely on data when real-world deployment is challenging.
arXiv Detail & Related papers (2024-11-08T17:20:47Z) - Overview of Current Challenges in Multi-Architecture Software Engineering and a Vision for the Future [0.0]
The presented system architecture is based on the concept of dynamic, knowledge graph-based WebAssembly Twins.
The resulting systems are to possess advanced autonomous capabilities, with full transparency and controllability by the end user.
arXiv Detail & Related papers (2024-10-28T13:03:09Z) - SERL: A Software Suite for Sample-Efficient Robotic Reinforcement Learning [82.46975428739329]
We develop a library containing a sample efficient off-policy deep RL method, together with methods for computing rewards and resetting the environment.<n>We find that our implementation can achieve very efficient learning, acquiring policies for PCB board assembly, cable routing, and object relocation.<n>These policies achieve perfect or near-perfect success rates, extreme robustness even under perturbations, and exhibit emergent robustness recovery and correction behaviors.
arXiv Detail & Related papers (2024-01-29T10:01:10Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Physical Computing for Materials Acceleration Platforms [81.09376948478891]
We argue that the same simulation and AI tools that will accelerate the search for new materials, as part of the MAPs research program, also make possible the design of fundamentally new computing mediums.
We outline a simulation-based MAP program to design computers that use physics itself to solve optimization problems.
We expect to introduce a new era of innovative collaboration between materials researchers and computer scientists.
arXiv Detail & Related papers (2022-08-17T23:03:54Z) - Tiny Robot Learning: Challenges and Directions for Machine Learning in
Resource-Constrained Robots [57.27442333662654]
Machine learning (ML) has become a pervasive tool across computing systems.
Tiny robot learning is the deployment of ML on resource-constrained low-cost autonomous robots.
Tiny robot learning is subject to challenges from size, weight, area, and power (SWAP) constraints.
This paper gives a brief survey of the tiny robot learning space, elaborates on key challenges, and proposes promising opportunities for future work in ML system design.
arXiv Detail & Related papers (2022-05-11T19:36:15Z) - Towards a Roadmap on Software Engineering for Responsible AI [17.46300715928443]
This paper aims to develop a roadmap on software engineering for responsible AI.
The roadmap focuses on (i) establishing multi-level governance for responsible AI systems, (ii) setting up the development processes incorporating process-oriented practices for responsible AI systems, and (iii) building responsible-AI-by-design into AI systems through system-level architectural style, patterns and techniques.
arXiv Detail & Related papers (2022-03-09T07:01:32Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
We propose a novel approach to enable Model-Driven Software Engineering and Model-Driven AI Engineering.
In particular, we support Automated ML, thus assisting software engineers without deep AI knowledge in developing AI-intensive systems.
arXiv Detail & Related papers (2022-03-06T10:12:56Z) - AI/ML Algorithms and Applications in VLSI Design and Technology [3.1171750528972204]
This paper reviews the AI/ML automated approaches introduced in the past towards VLSI design and manufacturing.
We discuss the scope of AI/ML applications in the future at various abstraction levels to revolutionize the field of VLSI design.
arXiv Detail & Related papers (2022-02-21T07:01:27Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
We propose a novel design philosophy called democratized learning (Dem-AI)
Inspired by the societal groups of humans, the specialized groups of learning agents in the proposed Dem-AI system are self-organized in a hierarchical structure to collectively perform learning tasks more efficiently.
We present a reference design as a guideline to realize future Dem-AI systems, inspired by various interdisciplinary fields.
arXiv Detail & Related papers (2020-03-18T08:45:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.