論文の概要: Enhancing variational quantum algorithms by balancing training on classical and quantum hardware
- arxiv url: http://arxiv.org/abs/2503.16361v2
- Date: Mon, 07 Jul 2025 08:24:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-08 15:46:34.276323
- Title: Enhancing variational quantum algorithms by balancing training on classical and quantum hardware
- Title(参考訳): 古典的および量子的ハードウェアのトレーニングバランスによる変分量子アルゴリズムの強化
- Authors: Rahul Bhowmick, Harsh Wadhwa, Avinash Singh, Tania Sidana, Quoc Hoan Tran, Krishna Kumar Sabapathy,
- Abstract要約: 量子ニューラルネットワークを用いた最大12キュービットハミルトニアンの変分量子固有解法(VQE)と量子位相分類
量子ニューラルネットワークを用いた最大12量子ビットハミルトニアンのVQEと量子位相分類を用いた6-18量子ハミルトニアンの基底状態推定手法の数値評価を行った。
- 参考スコア(独自算出の注目度): 1.8377902806196762
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computers offer a promising route to tackling problems that are classically intractable such as in prime-factorization, solving large-scale linear algebra and simulating complex quantum systems, but potentially require fault-tolerant quantum hardware. On the other hand, variational quantum algorithms (VQAs) are a promising approach for leveraging near-term quantum computers to solve complex problems. However, there remain major challenges in their trainability and resource costs on quantum hardware. Here we address these challenges by adopting Hardware Efficient and dynamical LIe algebra supported Ansatz (HELIA), and propose two training methods that combine an existing classical-enhanced g-sim method and the quantum-based Parameter-Shift Rule (PSR). Our improvement comes from distributing the resources required for gradient estimation and training to both classical and quantum hardware. We numerically evaluate our approach for ground-state estimation of 6 to 18-qubit Hamiltonians using the Variational Quantum Eigensolver (VQE) and quantum phase classification for up to 12-qubit Hamiltonians using quantum neural networks. For VQE, our method achieves higher accuracy and success rates, with an average reduction in quantum hardware calls of up to 60% compared to purely quantum-based PSR. For classification, we observe test accuracy improvements of up to 2.8%. We also numerically demonstrate the capability of HELIA in mitigating barren plateaus, paving the way for training large-scale quantum models.
- Abstract(参考訳): 量子コンピュータは、素数分解、大規模線形代数の解法、複雑な量子システムをシミュレートするなど、古典的に難解な問題に取り組むための有望な経路を提供するが、フォールトトレラントな量子ハードウェアを必要とする可能性がある。
一方、変分量子アルゴリズム(VQA)は、短期量子コンピュータを利用して複雑な問題を解くための有望なアプローチである。
しかしながら、量子ハードウェアのトレーニング容易性とリソースコストには、依然として大きな課題がある。
本稿では、ハードウェア効率および動的LIe代数をサポートするAnsatz(HELIA)を採用し、既存の古典的なg-sim法と量子ベースのパラメータシフト規則(PSR)を組み合わせた2つのトレーニング手法を提案する。
我々の改善は、勾配推定とトレーニングに必要なリソースを古典的および量子的ハードウェアの両方に分散することによる。
本稿では,変分量子固有解法(VQE)と量子位相分類を用いて,量子ニューラルネットワークを用いた最大12キュービットハミルトニアンの基底状態推定法について数値解析を行った。
VQEでは、純粋に量子ベースのPSRに比べて最大60%の量子ハードウェアコールを削減し、高い精度と成功率を達成する。
分類では,最大2.8%の精度向上が観察された。
また,大規模量子モデルの学習方法として,バレン高原の緩和におけるHELIAの能力を数値的に示す。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Parameterized quantum comb and simpler circuits for reversing unknown qubit-unitary operations [8.14510296131348]
量子プロセス変換タスクにおいて,量子コムの潜在能力を最大限に活用するためのPQCombを提案する。
未知のキュービットユニタリ進化の時間反転シミュレーションのための2つの合理化プロトコルを提案する。
また、PQCombを拡張して、量子ユニタリ変換とチャネル識別の問題を解決する。
論文 参考訳(メタデータ) (2024-03-06T14:53:24Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
量子コンピューティングは、アルゴリズムを設計する新しい方法の基礎となる。
どの場の量子スピードアップが達成できるかという新たな課題が生じる。
量子サブルーチンの設計は、従来のサブルーチンよりも効率的で、新しい強力な量子アルゴリズムに固い柱を向ける。
論文 参考訳(メタデータ) (2024-02-26T09:32:07Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
本稿では,分散量子コンピューティング(DQC)のためのリソース割り当て方式を提案する。
本評価は,提案手法の有効性と,量子コンピュータとオンデマンド量子コンピュータの両立性を示すものである。
論文 参考訳(メタデータ) (2022-09-16T02:37:32Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
本稿では,量子回路の初期化を最適化するために,古典計算資源を利用するスケーラブルな手法を提案する。
本手法は, PQCのトレーニング性, 性能を, 様々な問題において著しく向上させることを示す。
古典的コンピュータを用いて限られた量子資源を増強する手法を実証することにより、量子コンピューティングにおける量子と量子に着想を得たモデル間の相乗効果を実証する。
論文 参考訳(メタデータ) (2022-08-29T15:24:03Z) - Fundamental limitations on optimization in variational quantum
algorithms [7.165356904023871]
そのような短期量子アプリケーションを確立するための主要なパラダイムは、変分量子アルゴリズム(VQA)である。
このようなランダム回路の幅広いクラスにおいて、コスト関数の変動範囲は、高い確率で量子ビット数で指数関数的に消えることを示す。
この結果は、勾配に基づく最適化と勾配のない最適化の制約を自然に統一し、VQAのトレーニングランドスケープに余分な厳しい制約を明らかにすることができる。
論文 参考訳(メタデータ) (2022-05-10T17:14:57Z) - VQE Method: A Short Survey and Recent Developments [5.9640499950316945]
変分量子固有解法(VQE)は、ハミルトニアンの固有値と固有値を見つけるためにハイブリッド量子古典計算法を用いる方法である。
VQEは、様々な小さな分子に対する電子的シュリンガー方程式の解法に成功している。
現代の量子コンピュータは、現在利用可能なアンサツェを用いて生成されたディープ量子回路を実行することができない。
論文 参考訳(メタデータ) (2021-03-15T16:25:36Z) - Variational Quantum Algorithms [1.9486734911696273]
量子コンピュータは、大規模量子システムや大規模線形代数問題を解くなどの応用を解くことを約束する。
現在利用可能な量子デバイスには、量子ビット数の制限や回路深さを制限するノイズプロセスなど、深刻な制約がある。
パラメトリズド量子回路のトレーニングに古典的シミュレーションを用いる変分量子アルゴリズム(vqas)は、これらの制約に対処するための主要な戦略として登場した。
論文 参考訳(メタデータ) (2020-12-16T21:00:46Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。