DynamicVis: An Efficient and General Visual Foundation Model for Remote Sensing Image Understanding
- URL: http://arxiv.org/abs/2503.16426v1
- Date: Thu, 20 Mar 2025 17:59:54 GMT
- Title: DynamicVis: An Efficient and General Visual Foundation Model for Remote Sensing Image Understanding
- Authors: Keyan Chen, Chenyang Liu, Bowen Chen, Wenyuan Li, Zhengxia Zou, Zhenwei Shi,
- Abstract summary: DynamicVis is a dynamic visual perception foundation model for remote sensing imagery.<n>It integrates a novel dynamic region perception backbone based on the selective state space model.<n>It achieves multi-level feature modeling with exceptional efficiency, processing (2048x2048) pixels with 97 ms latency (6% of ViT's) and 833 MB GPU memory (3% of ViT's)
- Score: 25.32283897448209
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advancement of remote sensing technology has improved the spatial resolution of satellite imagery, facilitating more detailed visual representations for diverse interpretations. However, existing methods exhibit limited generalization capabilities across varied applications. While some contemporary foundation models demonstrate potential, they are hindered by insufficient cross-task adaptability and primarily process low-resolution imagery of restricted sizes, thus failing to fully exploit high-resolution data or leverage comprehensive large-scene semantics. Crucially, remote sensing imagery differs fundamentally from natural images, as key foreground targets (eg., maritime objects, artificial structures) often occupy minimal spatial proportions (~1%) and exhibit sparse distributions. Efficiently modeling cross-task generalizable knowledge from lengthy 2D tokens (~100,000) poses a significant challenge yet remains critical for remote sensing image understanding. Motivated by the selective attention mechanisms inherent to the human visual system, we propose DynamicVis, a dynamic visual perception foundation model for remote sensing imagery. The framework integrates a novel dynamic region perception backbone based on the selective state space model, which strategically balances localized detail extraction with global contextual integration, enabling computationally efficient encoding of large-scale data while maintaining architectural scalability. To enhance cross-task knowledge transferring, we introduce a multi-instance learning paradigm utilizing meta-embedding representations, trained on million-scale region-level annotations. Evaluations across nine downstream tasks demonstrate the model's versatility. DynamicVis achieves multi-level feature modeling with exceptional efficiency, processing (2048x2048) pixels with 97 ms latency (6% of ViT's) and 833 MB GPU memory (3% of ViT's).
Related papers
- Optimized Unet with Attention Mechanism for Multi-Scale Semantic Segmentation [8.443350618722564]
This paper proposes an improved Unet model combined with an attention mechanism.<n>It introduces channel attention and spatial attention modules, enhances the model's ability to focus on important features.<n>The improved model performs well in terms of mIoU and pixel accuracy (PA), reaching 76.5% and 95.3% respectively.
arXiv Detail & Related papers (2025-02-06T06:51:23Z) - Global Semantic-Guided Sub-image Feature Weight Allocation in High-Resolution Large Vision-Language Models [50.98559225639266]
Sub-images with higher semantic relevance to the entire image encapsulate richer visual information for preserving the model's visual understanding ability.<n>Global Semantic-guided Weight Allocator (GSWA) module allocates weights to sub-images based on their relative information density.<n>SleighVL, a lightweight yet high-performing model, outperforms models with comparable parameters and remains competitive with larger models.
arXiv Detail & Related papers (2025-01-24T06:42:06Z) - Cascaded Multi-Scale Attention for Enhanced Multi-Scale Feature Extraction and Interaction with Low-Resolution Images [20.140898354987353]
We propose a new attention mechanism, named cascaded multi-scale attention (CMSA), to handle low-resolution inputs effectively.<n>This architecture allows for the effective handling of features across different scales, enhancing the model's ability to perform tasks such as human pose estimation.<n>Our experimental results show that the proposed method outperforms existing state-of-the-art methods in these areas with fewer parameters.
arXiv Detail & Related papers (2024-12-03T06:23:19Z) - Unifying Visual and Semantic Feature Spaces with Diffusion Models for Enhanced Cross-Modal Alignment [20.902935570581207]
We introduce a Multimodal Alignment and Reconstruction Network (MARNet) to enhance the model's resistance to visual noise.
MARNet includes a cross-modal diffusion reconstruction module for smoothly and stably blending information across different domains.
Experiments conducted on two benchmark datasets, Vireo-Food172 and Ingredient-101, demonstrate that MARNet effectively improves the quality of image information extracted by the model.
arXiv Detail & Related papers (2024-07-26T16:30:18Z) - Gear-NeRF: Free-Viewpoint Rendering and Tracking with Motion-aware Spatio-Temporal Sampling [70.34875558830241]
We present a way for learning a-temporal (4D) embedding, based on semantic semantic gears to allow for stratified modeling of dynamic regions of rendering the scene.
At the same time, almost for free, our tracking approach enables free-viewpoint of interest - a functionality not yet achieved by existing NeRF-based methods.
arXiv Detail & Related papers (2024-06-06T03:37:39Z) - Efficient Visual State Space Model for Image Deblurring [83.57239834238035]
Convolutional neural networks (CNNs) and Vision Transformers (ViTs) have achieved excellent performance in image restoration.
We propose a simple yet effective visual state space model (EVSSM) for image deblurring.
arXiv Detail & Related papers (2024-05-23T09:13:36Z) - RS-Mamba for Large Remote Sensing Image Dense Prediction [58.12667617617306]
We propose the Remote Sensing Mamba (RSM) for dense prediction tasks in large VHR remote sensing images.
RSM is specifically designed to capture the global context of remote sensing images with linear complexity.
Our model achieves better efficiency and accuracy than transformer-based models on large remote sensing images.
arXiv Detail & Related papers (2024-04-03T12:06:01Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
This paper presents a holistic goal of maintaining spatially-precise high-resolution representations through the entire network.
We learn an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
Our approach achieves state-of-the-art results for a variety of image processing tasks, including defocus deblurring, image denoising, super-resolution, and image enhancement.
arXiv Detail & Related papers (2022-04-19T17:59:45Z) - MaxViT: Multi-Axis Vision Transformer [19.192826213493838]
We introduce an efficient and scalable attention model we call multi-axis attention.
We present a new architectural element by effectively blending our proposed attention model with convolutions.
We demonstrate the effectiveness of our model on a broad spectrum of vision tasks.
arXiv Detail & Related papers (2022-04-04T17:59:44Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.