論文の概要: AIDetection: A Generative AI Detection Tool for Educators Using Syntactic Matching of Common ASCII Characters As Potential 'AI Traces' Within Users' Internet Browser
- arxiv url: http://arxiv.org/abs/2503.16503v1
- Date: Wed, 12 Mar 2025 15:53:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-30 23:11:29.482858
- Title: AIDetection: A Generative AI Detection Tool for Educators Using Syntactic Matching of Common ASCII Characters As Potential 'AI Traces' Within Users' Internet Browser
- Title(参考訳): AIDetection: 共通ASCII文字の構文マッチングをユーザのインターネットブラウザ内での"AIトレース"の可能性として使用する、教育者のための生成AI検出ツール
- Authors: Andy Buschmann,
- Abstract要約: AIDetection.infoは、ジェネレーティブAIモデルによって残された共通トレースを識別するために、構文に基づくアプローチを採用している。
このツールは、ドキュメントをスキャンして、潜在的なAIアーティファクト、AI引用と承認をスキャンし、ダウンロード可能なExcelとCSVレポートによる視覚的な要約を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a simple JavaScript-based web application designed to assist educators in detecting AI-generated content in student essays and written assignments. Unlike existing AI detection tools that rely on obfuscated machine learning models, AIDetection.info employs a heuristic-based approach to identify common syntactic traces left by generative AI models, such as ChatGPT, Claude, Grok, DeepSeek, Gemini, Llama/Meta, Microsoft Copilot, Grammarly AI, and other text-generating models and wrapper applications. The tool scans documents in bulk for potential AI artifacts, as well as AI citations and acknowledgments, and provides a visual summary with downloadable Excel and CSV reports. This article details its methodology, functionalities, limitations, and applications within educational settings.
- Abstract(参考訳): 本稿では,学生エッセイや執筆課題におけるAI生成コンテンツの検出を支援するための,シンプルなJavaScriptベースのWebアプリケーションを提案する。
難読化機械学習モデルに依存する既存のAI検出ツールとは異なり、AIDetection.infoは、ChatGPT、Claude、Grok、DeepSeek、Gemini、Llama/Meta、Microsoft Copilot、Grammarly AI、その他のテキスト生成モデルやラッパーアプリケーションといった、生成AIモデルによって残された共通構文トレースを特定するために、ヒューリスティックなアプローチを採用している。
このツールは、ドキュメントをスキャンして、潜在的なAIアーティファクトと、AIの引用と承認をスキャンし、ダウンロード可能なExcelとCSVレポートによる視覚的な要約を提供する。
この記事では、その方法論、機能、制限、および教育環境における応用について詳述する。
関連論文リスト
- Could AI Trace and Explain the Origins of AI-Generated Images and Text? [53.11173194293537]
AI生成コンテンツは、現実の世界ではますます普及している。
敵は、大規模なマルチモーダルモデルを利用して、倫理的または法的基準に違反した画像を作成するかもしれない。
ペーパーレビュアーは、大きな言語モデルを誤用して、真の知的努力なしにレビューを生成する。
論文 参考訳(メタデータ) (2025-04-05T20:51:54Z) - Almost AI, Almost Human: The Challenge of Detecting AI-Polished Writing [55.2480439325792]
誤分類は、偽の盗作行為の告発や、オンラインコンテンツにおけるAIの普及に関する誤解を招く可能性がある。
我々は、AI-Polished-Text Evaluationデータセットを用いて、最先端の11のAIテキスト検出を体系的に評価した。
我々の発見によると、検出器は、最小限に磨き上げられたテキストをAI生成と誤分類し、AIの関与度を区別し、古いモデルと小さなモデルに偏見を示す。
論文 参考訳(メタデータ) (2025-02-21T18:45:37Z) - The Synergy of Automated Pipelines with Prompt Engineering and Generative AI in Web Crawling [0.0]
本研究では,生成型AIツールClaude AI(Sonnet)とChatGPT4.0を統合することにより,Webスクレイピングを自動化する。
クロードAIは一貫してChatGPT-4.0のスクリプト品質と適応性に優れていた。
論文 参考訳(メタデータ) (2024-12-29T17:27:55Z) - LLM-DetectAIve: a Tool for Fine-Grained Machine-Generated Text Detection [87.43727192273772]
テキストが人間の書いたものなのか、機械で作られたものなのかを判断するのは、しばしば困難である。
細粒度検出のためのLLM-DetectAIveを提案する。
i) 人書き、ii) 機械生成、(iii) 機械書、次いで機械書、(iv) 人書き、そして機械ポリッシュの4つのカテゴリをサポートする。
論文 参考訳(メタデータ) (2024-08-08T07:43:17Z) - Farsight: Fostering Responsible AI Awareness During AI Application Prototyping [32.235398722593544]
私たちはFarsightという、プロトタイピング中のAIアプリケーションから潜在的な害を識別する新しい対話型ツールを紹介します。
ユーザのプロンプトに基づいて、Farsightは関連するAIインシデントに関するニュース記事を強調し、LLM生成したユースケースやステークホルダ、障害を調査、編集することを可能にする。
10人のAIプロトタイプを用いた共同設計研究と42人のAIプロトタイプを用いたユーザスタディから得られた知見を報告する。
論文 参考訳(メタデータ) (2024-02-23T14:38:05Z) - AI Content Self-Detection for Transformer-based Large Language Models [0.0]
本稿では、直接起点検出の概念を導入し、生成型AIシステムが出力を認識し、人文テキストと区別できるかどうかを評価する。
GoogleのBardモデルは、精度94%の自己検出の最大の能力を示し、OpenAIのChatGPTは83%である。
論文 参考訳(メタデータ) (2023-12-28T10:08:57Z) - How to Build an Adaptive AI Tutor for Any Course Using Knowledge Graph-Enhanced Retrieval-Augmented Generation (KG-RAG) [5.305156933641317]
知的学習システム(ITS)におけるLarge Language Models (LLMs)は、パーソナライズされた教育に変革をもたらす機会を提供する。
現在の実装では、2つの重要な課題に直面している。
本稿では,構造化知識表現と文脈認識検索を統合した新しいフレームワークである知識グラフ強化検索(RAG)を提案する。
論文 参考訳(メタデータ) (2023-11-29T15:02:46Z) - Perceptions and Detection of AI Use in Manuscript Preparation for
Academic Journals [1.881901067333374]
大規模言語モデル(LLM)は、AIが学術的な文章にどのように影響するかを興奮と心配の両方を生み出している。
学術出版物の著者は、原稿の改訂に使用するAIツールを自発的に開示するかもしれない。
ジャーナルやカンファレンスは、開示を義務付けるか、あるいは検出サービスを使用するようにします。
論文 参考訳(メタデータ) (2023-11-19T06:04:46Z) - AI-Generated Images as Data Source: The Dawn of Synthetic Era [61.879821573066216]
生成AIは、現実世界の写真によく似た合成画像を作成する可能性を解き放った。
本稿では、これらのAI生成画像を新しいデータソースとして活用するという革新的な概念を探求する。
実際のデータとは対照的に、AI生成データには、未整合のアブリダンスやスケーラビリティなど、大きなメリットがある。
論文 参考訳(メタデータ) (2023-10-03T06:55:19Z) - Can AI-Generated Text be Reliably Detected? [50.95804851595018]
大規模言語モデル(LLM)は、様々なアプリケーションで非常によく機能します。
盗作、偽ニュースの発生、スパムなどの活動においてこれらのモデルが誤用される可能性があることは、彼らの責任ある使用に対する懸念を引き起こしている。
我々は、攻撃者の存在下で、これらのAIテキスト検出装置の堅牢性を強調テストする。
論文 参考訳(メタデータ) (2023-03-17T17:53:19Z) - How Generative AI models such as ChatGPT can be (Mis)Used in SPC
Practice, Education, and Research? An Exploratory Study [2.0841728192954663]
生成人工知能(AI)モデルは、統計的プロセス制御(SPC)の実践、学習、研究に革命をもたらす可能性がある。
これらのツールは開発の初期段階にあり、簡単に誤用されるか、誤解される可能性がある。
コードを提供し、基本的な概念を説明し、SPCの実践、学習、研究に関する知識を創造するChatGPTの能力を探求する。
論文 参考訳(メタデータ) (2023-02-17T15:48:37Z) - GenNI: Human-AI Collaboration for Data-Backed Text Generation [102.08127062293111]
Table2Textシステムは、機械学習を利用した構造化データに基づいてテキスト出力を生成する。
GenNI (Generation Negotiation Interface) は、対話型ビジュアルシステムである。
論文 参考訳(メタデータ) (2021-10-19T18:07:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。