論文の概要: How to Build an Adaptive AI Tutor for Any Course Using Knowledge Graph-Enhanced Retrieval-Augmented Generation (KG-RAG)
- arxiv url: http://arxiv.org/abs/2311.17696v7
- Date: Wed, 12 Feb 2025 10:45:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 13:46:20.837326
- Title: How to Build an Adaptive AI Tutor for Any Course Using Knowledge Graph-Enhanced Retrieval-Augmented Generation (KG-RAG)
- Title(参考訳): 知識グラフ強化検索型生成(KG-RAG)を用いた任意の科目適応型AIチュータの構築
- Authors: Chenxi Dong, Yimin Yuan, Kan Chen, Shupei Cheng, Chujie Wen,
- Abstract要約: 知的学習システム(ITS)におけるLarge Language Models (LLMs)は、パーソナライズされた教育に変革をもたらす機会を提供する。
現在の実装では、2つの重要な課題に直面している。
本稿では,構造化知識表現と文脈認識検索を統合した新しいフレームワークである知識グラフ強化検索(RAG)を提案する。
- 参考スコア(独自算出の注目度): 5.305156933641317
- License:
- Abstract: Integrating Large Language Models (LLMs) in Intelligent Tutoring Systems (ITS) presents transformative opportunities for personalized education. However, current implementations face two critical challenges: maintaining factual accuracy and delivering coherent, context-aware instruction. While Retrieval-Augmented Generation (RAG) partially addresses these issues, its reliance on pure semantic similarity limits its effectiveness in educational contexts where conceptual relationships are crucial. This paper introduces Knowledge Graph-enhanced Retrieval-Augmented Generation (KG-RAG), a novel framework that integrates structured knowledge representation with context-aware retrieval to enable more effective AI tutoring. We present three key contributions: (1) a novel architecture that grounds AI responses in structured domain knowledge, (2) empirical validation through controlled experiments (n=76) demonstrating significant learning improvements (35% increase in assessment scores, p<0.001), and (3) a comprehensive implementation framework addressing practical deployment considerations. These results establish KG-RAG as a robust solution for developing adaptable AI tutoring systems across diverse educational contexts.
- Abstract(参考訳): 知的学習システム(ITS)におけるLarge Language Models(LLMs)の統合は、パーソナライズされた教育に変革をもたらす機会を提供する。
しかし、現在の実装は2つの重要な課題に直面している。
Retrieval-Augmented Generation (RAG)はこれらの問題に部分的に対処するが、純粋な意味的類似性への依存は、概念的関係が不可欠である教育的文脈におけるその有効性を制限する。
本稿では,構造化知識表現と文脈認識検索を統合し,より効果的なAI学習を実現する新しいフレームワークであるKG-RAGを提案する。
我々は,(1)構造化ドメイン知識にAIの応答を基盤とした新しいアーキテクチャ,(2)制御実験による実証的検証(n=76)により,大幅な学習改善(35%増点,p<0.001),(3)実践的展開を考慮した総合的な実装フレームワークを提案する。
これらの結果は、KG-RAGを、様々な教育的文脈で適応可能なAI学習システムの開発のための堅牢なソリューションとして確立する。
関連論文リスト
- ReVISE: Learning to Refine at Test-Time via Intrinsic Self-Verification [53.80183105328448]
Refine via Intrinsic Self-Verification (ReVISE)は、LLMが自己検証を通じてアウトプットを自己修正できる効率的なフレームワークである。
様々な推論タスクに関する実験により、ReVISEは効率的な自己補正を実現し、推論性能を大幅に向上することを示した。
論文 参考訳(メタデータ) (2025-02-20T13:50:02Z) - The AI Assessment Scale Revisited: A Framework for Educational Assessment [0.0]
ジェネレーティブ・人工知能(GenAI)の最近の進歩は、教育において大きな不確実性を生み出している。
我々は、2つの基本的な目的を持ったフレームワークであるAIAS(AI Assessment Scale)の更新版を提示する。
論文 参考訳(メタデータ) (2024-12-12T07:44:52Z) - Generative AI and Its Impact on Personalized Intelligent Tutoring Systems [0.0]
生成AIは、動的コンテンツ生成、リアルタイムフィードバック、適応学習経路を通じてパーソナライズされた教育を可能にする。
報告では、自動質問生成、カスタマイズされたフィードバック機構、対話システムなどの重要な応用について検討する。
今後の方向性は、マルチモーダルAI統合の潜在的な進歩、学習システムにおける感情的知性、そしてAI駆動型教育の倫理的意味を強調する。
論文 参考訳(メタデータ) (2024-10-14T16:01:01Z) - StructRAG: Boosting Knowledge Intensive Reasoning of LLMs via Inference-time Hybrid Information Structurization [94.31508613367296]
Retrieval-augmented Generation(RAG)は、大規模言語モデル(LLM)を効果的に強化する鍵となる手段である。
本稿では,手前のタスクに対して最適な構造型を識別し,元の文書をこの構造化形式に再構成し,その結果に基づいて回答を推測するStructRAGを提案する。
実験の結果、StructRAGは最先端のパフォーマンスを実現し、特に挑戦的なシナリオに優れていた。
論文 参考訳(メタデータ) (2024-10-11T13:52:44Z) - Comprehensive AI Assessment Framework: Enhancing Educational Evaluation with Ethical AI Integration [0.0]
本稿では、Perkins、Furze、Roe、MacVaughによるAIA(AIAS)の進化版である包括的AIアセスメントフレームワーク(CAIAF)について述べる。
CAIAFは厳格な倫理的ガイドラインを取り入れており、教育レベルと高度なAI能力に基づいて明確に区別されている。
このフレームワークは、より良い学習結果を保証するとともに、学術的完全性を維持し、AIの責任ある利用を促進する。
論文 参考訳(メタデータ) (2024-06-07T07:18:42Z) - A Knowledge-Injected Curriculum Pretraining Framework for Question Answering [70.13026036388794]
本稿では,知識に基づく質問応答タスクの総合的なKG学習と活用を実現するための一般知識注入型カリキュラム事前学習フレームワーク(KICP)を提案する。
KIモジュールはまずKG中心の事前学習コーパスを生成してLMに知識を注入し、プロセスを3つの重要なステップに一般化する。
KAモジュールは、アダプタを備えたLMで生成されたコーパスから知識を学習し、元の自然言語理解能力を維持できる。
CRモジュールは人間の推論パターンに従って3つのコーパスを構築する。
論文 参考訳(メタデータ) (2024-03-11T03:42:03Z) - Enhancing Instructional Quality: Leveraging Computer-Assisted Textual
Analysis to Generate In-Depth Insights from Educational Artifacts [13.617709093240231]
本研究では、人工知能(AI)と機械学習(ML)が教育内容、教師の談話、学生の反応を分析して教育改善を促進する方法について検討する。
私たちは、教師のコーチング、学生のサポート、コンテンツ開発など、AI/ML統合が大きな利点をもたらす重要な領域を特定します。
本稿では,AI/ML技術と教育的目標との整合性の重要性を強調し,その教育的可能性を実現する。
論文 参考訳(メタデータ) (2024-03-06T18:29:18Z) - Towards Verifiable Generation: A Benchmark for Knowledge-aware Language Model Attribution [48.86322922826514]
本稿では,知識認識型言語モデル属性(KaLMA)の新たな課題について述べる。
まず、属性のソースを構造化されていないテキストから知識グラフ(KG)に拡張し、そのリッチな構造は属性のパフォーマンスと作業シナリオの両方に役立ちます。
第2に,不完全な知識リポジトリを考慮した「意識的非能力」の設定を提案する。
第3に,テキスト品質,引用品質,引用アライメントを含む総合的な自動評価指標を提案する。
論文 参考訳(メタデータ) (2023-10-09T11:45:59Z) - Knowledge Graph Augmented Network Towards Multiview Representation
Learning for Aspect-based Sentiment Analysis [96.53859361560505]
本稿では,知識グラフ拡張ネットワーク(KGAN)を提案する。
KGANは感情の特徴表現を、文脈、構文、知識に基づく複数の視点から捉えている。
3つの人気のあるABSAベンチマークの実験は、我々のKGANの有効性と堅牢性を示している。
論文 参考訳(メタデータ) (2022-01-13T08:25:53Z) - A Dependency Syntactic Knowledge Augmented Interactive Architecture for
End-to-End Aspect-based Sentiment Analysis [73.74885246830611]
エンドツーエンドABSAのためのマルチタスク学習を用いた対話型アーキテクチャを新たに提案する。
このモデルは、よく設計された依存性関係埋め込みグラフ畳み込みネットワーク(DreGcn)を活用することで、構文知識(依存性関係と型)を完全に活用することができる。
3つのベンチマークデータセットの大規模な実験結果から,本手法の有効性が示された。
論文 参考訳(メタデータ) (2020-04-04T14:59:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。