論文の概要: Mind2: Mind-to-Mind Emotional Support System with Bidirectional Cognitive Discourse Analysis
- arxiv url: http://arxiv.org/abs/2503.16523v1
- Date: Mon, 17 Mar 2025 11:39:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-24 14:58:37.347597
- Title: Mind2: Mind-to-Mind Emotional Support System with Bidirectional Cognitive Discourse Analysis
- Title(参考訳): Mind2:双方向認知談話分析による心と心の感情支援システム
- Authors: Shi Yin Hong, Uttamasha Oyshi, Quan Mai, Gibson Nkhata, Susan Gauch,
- Abstract要約: 対話分析の観点から解釈可能なESコンテキストモデリングにアプローチするESフレームワークであるMind-to-Mind(Mind2)を提案する。
具体的には,動的な会話コンテキストの伝搬ウィンドウに従って,ES対話における認知談話分析を行う。
解釈可能性を高めるために、Mind2は、各話者が双方向性を持つ他の話者に対する信念を反映する詳細を優先する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Emotional support (ES) systems alleviate users' mental distress by generating strategic supportive dialogues based on diverse user situations. However, ES systems are limited in their ability to generate effective ES dialogues that include timely context and interpretability, hindering them from earning public trust. Driven by cognitive models, we propose Mind-to-Mind (Mind2), an ES framework that approaches interpretable ES context modeling for the ES dialogue generation task from a discourse analysis perspective. Specifically, we perform cognitive discourse analysis on ES dialogues according to our dynamic discourse context propagation window, which accommodates evolving context as the conversation between the ES system and user progresses. To enhance interpretability, Mind2 prioritizes details that reflect each speaker's belief about the other speaker with bidirectionality, integrating Theory-of-Mind, physiological expected utility, and cognitive rationality to extract cognitive knowledge from ES conversations. Experimental results support that Mind2 achieves competitive performance versus state-of-the-art ES systems while trained with only 10\% of the available training data.
- Abstract(参考訳): 感情支援システム(ES)は、多様なユーザ状況に基づいて戦略的支援対話を生成することにより、ユーザの精神的苦痛を軽減する。
しかし、ESシステムは、タイムリーな文脈や解釈可能性を含む効果的なES対話を生成する能力に制限されており、公共の信頼を得るのを妨げている。
認知モデルを用いて,会話分析の観点から,ES対話生成タスクの解釈可能なESコンテキストモデリングにアプローチするESフレームワークであるMind-to-Mind(Mind2)を提案する。
具体的には,ESシステムとユーザ間の対話として,進化するコンテキストに対応する動的会話コンテキスト伝搬ウィンドウに従って,ES対話の認知的談話分析を行う。
解釈可能性を高めるために、Mind2は、各話者の双方向性に対する信念を反映した詳細を優先し、理論・オブ・ミンド、生理学的に期待される実用性、認知的合理性を統合して、ES会話から認知的知識を抽出する。
実験の結果、Mind2は、利用可能なトレーニングデータのわずか10%でトレーニングしながら、最先端のESシステムと競合するパフォーマンスを実現している。
関連論文リスト
- Leveraging Chain of Thought towards Empathetic Spoken Dialogue without Corresponding Question-Answering Data [33.85748258158527]
共感的対話は人間とコンピュータの自然な相互作用に不可欠である。
大規模言語モデル(LLM)は、その強力な能力を活用して対話生成に革命をもたらした。
本稿では,質問応答データの必要性を回避する新しい手法を提案する。
論文 参考訳(メタデータ) (2025-01-19T04:10:53Z) - Empathy Through Multimodality in Conversational Interfaces [1.360649555639909]
会話型健康エージェント(CHA)は、感情的なインテリジェンスを組み込むためにテキスト分析を超越するニュアンスなサポートを提供することで、医療を再定義している。
本稿では、豊かなマルチモーダル対話のためのLCMベースのCHAについて紹介する。
マルチモーダルな手がかりを解析することにより、ユーザの感情状態に順応的に解釈し、応答し、文脈的に認識され、共感的に反響する音声応答を提供する。
論文 参考訳(メタデータ) (2024-05-08T02:48:29Z) - K-ESConv: Knowledge Injection for Emotional Support Dialogue Systems via
Prompt Learning [83.19215082550163]
K-ESConvは、感情支援対話システムのための、新しい学習に基づく知識注入手法である。
本研究では,情緒的支援データセットESConvを用いて,外部の専門的情緒的Q&Aフォーラムから知識を抽出し,組み込んだモデルを評価した。
論文 参考訳(メタデータ) (2023-12-16T08:10:10Z) - From Multilingual Complexity to Emotional Clarity: Leveraging
Commonsense to Unveil Emotions in Code-Mixed Dialogues [38.87497808740538]
会話中の感情を理解することは人間のコミュニケーションの基本的な側面であり、会話における感情認識のためのNLP研究を推進している。
本稿では,感情のより深い理解を促進するために,コモンセンス情報を対話コンテキストと統合する革新的なアプローチを提案する。
総合的な実験により,ERCにおけるコモンセンスの体系的導入によって得られた実質的な性能向上が示された。
論文 参考訳(メタデータ) (2023-10-19T18:17:00Z) - Facilitating Multi-turn Emotional Support Conversation with Positive
Emotion Elicitation: A Reinforcement Learning Approach [58.88422314998018]
感情支援会話(ESC)は、精神状態を改善するための感情支援(ES)を提供することを目的としている。
既存の作業は、ESへの影響を無視し、感情的なポジティブな移行を導くための明確な目標が欠如している、接地された応答と対応戦略に留まっている。
マルチターンESCを肯定的感情誘発のプロセスとして定式化する新しいパラダイムを導入する。
論文 参考訳(メタデータ) (2023-07-16T09:58:44Z) - Improving Multi-turn Emotional Support Dialogue Generation with
Lookahead Strategy Planning [81.79431311952656]
感情支援のための新しいシステムMultiESCを提案する。
戦略プランニングでは,特定の戦略を使用した後のユーザフィードバックを見積もるルックアヘッドを提案する。
ユーザ状態モデリングにおいて、MultiESCはユーザーの微妙な感情表現を捉え、感情の原因を理解することに重点を置いている。
論文 参考訳(メタデータ) (2022-10-09T12:23:47Z) - Emotion Recognition in Conversation using Probabilistic Soft Logic [17.62924003652853]
会話における感情認識(英: emotion recognition in conversation、ERC)とは、2つ以上の発話を含む会話に焦点を当てた感情認識のサブフィールドである。
我々は,宣言的テンプレート言語である確率的ソフト論理(PSL)にアプローチを実装した。
PSLは、ニューラルモデルからPSLモデルへの結果の取り込みのための機能を提供する。
提案手法を最先端の純粋ニューラルネットワークERCシステムと比較した結果,約20%の改善が得られた。
論文 参考訳(メタデータ) (2022-07-14T23:59:06Z) - E-ffective: A Visual Analytic System for Exploring the Emotion and
Effectiveness of Inspirational Speeches [57.279044079196105]
E-ffective(エフェクティブ)は、音声の専門家や初心者が、音声要因の役割と効果的な音声への貢献の両方を分析することのできる視覚分析システムである。
E-spiral(音声の感情の変化を視覚的にコンパクトに表現する)とE-script(音声コンテンツを主要な音声配信情報に結びつける)の2つの新しい可視化技術がある。
論文 参考訳(メタデータ) (2021-10-28T06:14:27Z) - Advances in Multi-turn Dialogue Comprehension: A Survey [51.215629336320305]
自然言語を理解し、人間と対話するための訓練機械は、人工知能の解明と本質的なタスクである。
本稿では,対話理解タスクにおける対話モデリングの技術的視点から,過去の手法を概観する。
さらに,対話シナリオにおけるPrLMの強化に使用される対話関連事前学習手法を分類する。
論文 参考訳(メタデータ) (2021-10-11T03:52:37Z) - BiERU: Bidirectional Emotional Recurrent Unit for Conversational
Sentiment Analysis [18.1320976106637]
会話感情分析と単文感情分析の主な違いは、文脈情報の存在である。
既存のアプローチでは、会話内の異なるパーティを区別し、コンテキスト情報をモデル化するために複雑なディープラーニング構造を採用している。
本稿では,会話感情分析のための双方向感情的反復単位という,高速でコンパクトでパラメータ効率のよい非依存フレームワークを提案する。
論文 参考訳(メタデータ) (2020-05-31T11:13:13Z) - You Impress Me: Dialogue Generation via Mutual Persona Perception [62.89449096369027]
認知科学の研究は、理解が高品質なチャット会話に不可欠なシグナルであることを示唆している。
そこで我々は,P2 Botを提案する。このP2 Botは,理解を明示的にモデル化することを目的とした送信機受信者ベースのフレームワークである。
論文 参考訳(メタデータ) (2020-04-11T12:51:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。