Does Chain-of-Thought Reasoning Help Mobile GUI Agent? An Empirical Study
- URL: http://arxiv.org/abs/2503.16788v1
- Date: Fri, 21 Mar 2025 01:52:43 GMT
- Title: Does Chain-of-Thought Reasoning Help Mobile GUI Agent? An Empirical Study
- Authors: Li Zhang, Longxi Gao, Mengwei Xu,
- Abstract summary: This paper presents the first empirical study on the effectiveness of reasoning-enabled vision-language models (VLMs) in mobile GUI agents.<n>We evaluate two pairs of commercial models--Gemini 2.0 Flash and Claude 3.7 Sonnet--comparing their base and reasoning-enhanced versions across two benchmarks.<n>We surprisingly find the Claude 3.7 Sonnet reasoning model achieves state-of-the-art performance on AndroidWorld.
- Score: 4.18969040567543
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reasoning capabilities have significantly improved the performance of vision-language models (VLMs) in domains such as mathematical problem-solving, coding, and visual question-answering. However, their impact on real-world applications remains unclear. This paper presents the first empirical study on the effectiveness of reasoning-enabled VLMs in mobile GUI agents, a domain that requires interpreting complex screen layouts, understanding user instructions, and executing multi-turn interactions. We evaluate two pairs of commercial models--Gemini 2.0 Flash and Claude 3.7 Sonnet--comparing their base and reasoning-enhanced versions across two static benchmarks (ScreenSpot and AndroidControl) and one interactive environment (AndroidWorld). We surprisingly find the Claude 3.7 Sonnet reasoning model achieves state-of-the-art performance on AndroidWorld. However, reasoning VLMs generally offer marginal improvements over non-reasoning models on static benchmarks and even degrade performance in some agent setups. Notably, reasoning and non-reasoning VLMs fail on different sets of tasks, suggesting that reasoning does have an impact, but its benefits and drawbacks counterbalance each other. We attribute these inconsistencies to the limitations of benchmarks and VLMs. Based on the findings, we provide insights for further enhancing mobile GUI agents in terms of benchmarks, VLMs, and their adaptability in dynamically invoking reasoning VLMs. The experimental data are publicly available at https://github.com/LlamaTouch/VLM-Reasoning-Traces.
Related papers
- V-MAGE: A Game Evaluation Framework for Assessing Visual-Centric Capabilities in Multimodal Large Language Models [84.27290155010533]
V-MAGE is a game-based evaluation framework designed to assess visual reasoning capabilities of MLLMs.
We use V-MAGE to evaluate leading MLLMs, revealing significant challenges in their visual perception and reasoning.
arXiv Detail & Related papers (2025-04-08T15:43:01Z) - VOILA: Evaluation of MLLMs For Perceptual Understanding and Analogical Reasoning [63.0285363282581]
Multimodal Large Language Models (MLLMs) have become a powerful tool for integrating visual and textual information.<n>We introduce VOILA, a benchmark designed to evaluate MLLMs' perceptual understanding and abstract relational reasoning.<n>We reveal that current MLLMs struggle to comprehend inter-image relationships and exhibit limited capabilities in high-level relational reasoning.
arXiv Detail & Related papers (2025-02-25T23:36:19Z) - iVISPAR -- An Interactive Visual-Spatial Reasoning Benchmark for VLMs [4.381263829108405]
Vision-Language Models (VLMs) are known to struggle with spatial reasoning and visual alignment.
We introduce iVISPAR, an interactive multi-modal benchmark designed to evaluate the spatial reasoning capabilities of VLMs acting as agents.
arXiv Detail & Related papers (2025-02-05T14:29:01Z) - Physics Context Builders: A Modular Framework for Physical Reasoning in Vision-Language Models [9.474337395173388]
Physical reasoning remains a significant challenge for Vision-Language Models (VLMs)<n>Fine-tuning is expensive for large models and impractical to repeatedly perform for every task.<n>We introduce Physics Context Builders (PCBs), a novel modular framework where specialized VLMs are fine-tuned to generate detailed physical scene descriptions.
arXiv Detail & Related papers (2024-12-11T18:40:16Z) - MageBench: Bridging Large Multimodal Models to Agents [90.59091431806793]
LMMs have shown impressive visual understanding capabilities, with the potential to be applied in agents.
Existing benchmarks mostly assess their reasoning abilities in language part.
MageBench is a reasoning capability oriented multimodal agent benchmark.
arXiv Detail & Related papers (2024-12-05T17:08:19Z) - VHELM: A Holistic Evaluation of Vision Language Models [75.88987277686914]
We present the Holistic Evaluation of Vision Language Models (VHELM)
VHELM aggregates various datasets to cover one or more of the 9 aspects: visual perception, knowledge, reasoning, bias, fairness, multilinguality, robustness, toxicity, and safety.
Our framework is designed to be lightweight and automatic so that evaluation runs are cheap and fast.
arXiv Detail & Related papers (2024-10-09T17:46:34Z) - MobileVLM: A Vision-Language Model for Better Intra- and Inter-UI Understanding [37.15649883702765]
We propose MobileVLM, which includes two additional pre-training stages to enhance both intra- and inter-UI understanding.
To address the lack of mobile pre-training data, we built a large Chinese mobile dataset Mobile3M from scratch, which contains 3 million UI pages.
Experimental results show MobileVLM excels on both our test set and public mobile benchmarks, outperforming existing VLMs.
arXiv Detail & Related papers (2024-09-23T08:47:54Z) - Can Feedback Enhance Semantic Grounding in Large Vision-Language Models? [61.899791071654654]
We investigate whether Vision-Language Models (VLMs) can improve their semantic grounding by "receiving" feedback.
We find that if prompted appropriately, VLMs can utilize feedback both in a single step and iteratively.
We show grounding accuracy consistently improves using automated feedback across all models in all settings investigated.
arXiv Detail & Related papers (2024-04-09T17:59:04Z) - NPHardEval4V: A Dynamic Reasoning Benchmark of Multimodal Large Language
Models [34.91372939329467]
We introduce a benchmark, NPHardEval4V, to evaluate the pure reasoning abilities of MLLMs.
Our findings reveal significant discrepancies in reasoning abilities across different models.
We also investigate the impact of different prompting styles, including visual, text, and combined visual and text prompts, on the reasoning abilities of MLLMs.
arXiv Detail & Related papers (2024-03-04T07:10:31Z) - Prismatic VLMs: Investigating the Design Space of Visually-Conditioned Language Models [73.40350756742231]
Visually-conditioned language models (VLMs) have seen growing adoption in applications such as visual dialogue, scene understanding, and robotic task planning.
Despite the volume of new releases, key design decisions around image preprocessing, architecture, and optimization are under-explored.
arXiv Detail & Related papers (2024-02-12T18:21:14Z) - CogCoM: A Visual Language Model with Chain-of-Manipulations Reasoning [61.21923643289266]
Chain of Manipulations is a mechanism that enables Vision-Language Models to solve problems step-by-step with evidence.<n>After training, models can solve various visual problems by eliciting intrinsic manipulations (e.g., grounding, zoom in) actively without involving external tools.<n>Our trained model, textbfCogCoM, achieves state-of-the-art performance across 9 benchmarks from 4 categories.
arXiv Detail & Related papers (2024-02-06T18:43:48Z) - Mobile-Env: Building Qualified Evaluation Benchmarks for LLM-GUI Interaction [28.53259866617677]
We introduce Mobile-Env, a comprehensive toolkit tailored for creating GUI benchmarks in the Android mobile environment.
We collect an open-world task set across various real-world apps and a fixed world set, WikiHow, which captures a significant amount of dynamic online contents.
Our findings reveal that even advanced models struggle with tasks that are relatively simple for humans.
arXiv Detail & Related papers (2023-05-14T12:31:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.