V-MAGE: A Game Evaluation Framework for Assessing Visual-Centric Capabilities in Multimodal Large Language Models
- URL: http://arxiv.org/abs/2504.06148v1
- Date: Tue, 08 Apr 2025 15:43:01 GMT
- Title: V-MAGE: A Game Evaluation Framework for Assessing Visual-Centric Capabilities in Multimodal Large Language Models
- Authors: Xiangxi Zheng, Linjie Li, Zhengyuan Yang, Ping Yu, Alex Jinpeng Wang, Rui Yan, Yuan Yao, Lijuan Wang,
- Abstract summary: V-MAGE is a game-based evaluation framework designed to assess visual reasoning capabilities of MLLMs.<n>We use V-MAGE to evaluate leading MLLMs, revealing significant challenges in their visual perception and reasoning.
- Score: 84.27290155010533
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in Multimodal Large Language Models (MLLMs) have led to significant improvements across various multimodal benchmarks. However, as evaluations shift from static datasets to open-world, dynamic environments, current game-based benchmarks remain inadequate because they lack visual-centric tasks and fail to assess the diverse reasoning skills required for real-world decision-making. To address this, we introduce Visual-centric Multiple Abilities Game Evaluation (V-MAGE), a game-based evaluation framework designed to assess visual reasoning capabilities of MLLMs. V-MAGE features five diverse games with 30+ handcrafted levels, testing models on core visual skills such as positioning, trajectory tracking, timing, and visual memory, alongside higher-level reasoning like long-term planning and deliberation. We use V-MAGE to evaluate leading MLLMs, revealing significant challenges in their visual perception and reasoning. In all game environments, the top-performing MLLMs, as determined by Elo rating comparisons, exhibit a substantial performance gap compared to humans. Our findings highlight critical limitations, including various types of perceptual errors made by the models, and suggest potential avenues for improvement from an agent-centric perspective, such as refining agent strategies and addressing perceptual inaccuracies. Code is available at https://github.com/CSU-JPG/V-MAGE.
Related papers
- VisuLogic: A Benchmark for Evaluating Visual Reasoning in Multi-modal Large Language Models [121.03333569013148]
We introduce VisuLogic: a benchmark of 1,000 human-verified problems across six categories.
These types of questions can be evaluated to assess the visual reasoning capabilities of MLLMs from multiple perspectives.
Most models score below 30% accuracy-only slightly above the 25% random baseline and far below the 51.4% achieved by humans.
arXiv Detail & Related papers (2025-04-21T17:59:53Z) - VERIFY: A Benchmark of Visual Explanation and Reasoning for Investigating Multimodal Reasoning Fidelity [34.29409506366145]
VERIFY is a benchmark designed to isolate and rigorously evaluate the visual reasoning capabilities of state-of-the-art MLLMs.<n>Each problem is accompanied by a human-annotated reasoning path, making it the first to provide in-depth evaluation of model decision-making processes.<n>We propose novel metrics that assess visual reasoning fidelity beyond mere accuracy, highlighting critical imbalances in current model reasoning patterns.
arXiv Detail & Related papers (2025-03-14T16:26:11Z) - Are Large Vision Language Models Good Game Players? [25.49713745405194]
Large Vision Language Models (LVLMs) have demonstrated remarkable abilities in understanding and reasoning about both visual and textual information.<n>Existing evaluation methods for LVLMs, primarily based on benchmarks like Visual Question Answering, often fail to capture the full scope of LVLMs' capabilities.<n>We propose method, a game-based evaluation framework designed to provide a comprehensive assessment of LVLMs' cognitive and reasoning skills in structured environments.
arXiv Detail & Related papers (2025-03-04T07:29:03Z) - VisFactor: Benchmarking Fundamental Visual Cognition in Multimodal Large Language Models [62.667142971664575]
We introduce VisFactor, a novel benchmark derived from the Factor-Referenced Cognitive Test (FRCT)<n>VisFactor digitalizes vision-related FRCT subtests to systematically evaluate MLLMs across essential visual cognitive tasks.<n>We present a comprehensive evaluation of state-of-the-art MLLMs, such as GPT-4o, Gemini-Pro, and Qwen-VL.
arXiv Detail & Related papers (2025-02-23T04:21:32Z) - MMIE: Massive Multimodal Interleaved Comprehension Benchmark for Large Vision-Language Models [71.36392373876505]
We introduce MMIE, a large-scale benchmark for evaluating interleaved multimodal comprehension and generation in Large Vision-Language Models (LVLMs)<n>MMIE comprises 20K meticulously curated multimodal queries, spanning 3 categories, 12 fields, and 102 subfields, including mathematics, coding, physics, literature, health, and arts.<n>It supports both interleaved inputs and outputs, offering a mix of multiple-choice and open-ended question formats to evaluate diverse competencies.
arXiv Detail & Related papers (2024-10-14T04:15:00Z) - VHELM: A Holistic Evaluation of Vision Language Models [75.88987277686914]
We present the Holistic Evaluation of Vision Language Models (VHELM)
VHELM aggregates various datasets to cover one or more of the 9 aspects: visual perception, knowledge, reasoning, bias, fairness, multilinguality, robustness, toxicity, and safety.
Our framework is designed to be lightweight and automatic so that evaluation runs are cheap and fast.
arXiv Detail & Related papers (2024-10-09T17:46:34Z) - NPHardEval4V: A Dynamic Reasoning Benchmark of Multimodal Large Language
Models [34.91372939329467]
We introduce a benchmark, NPHardEval4V, to evaluate the pure reasoning abilities of MLLMs.
Our findings reveal significant discrepancies in reasoning abilities across different models.
We also investigate the impact of different prompting styles, including visual, text, and combined visual and text prompts, on the reasoning abilities of MLLMs.
arXiv Detail & Related papers (2024-03-04T07:10:31Z) - GameEval: Evaluating LLMs on Conversational Games [93.40433639746331]
We propose GameEval, a novel approach to evaluating large language models (LLMs)
GameEval treats LLMs as game players and assigns them distinct roles with specific goals achieved by launching conversations of various forms.
We show that GameEval can effectively differentiate the capabilities of various LLMs, providing a comprehensive assessment of their integrated abilities to solve complex problems.
arXiv Detail & Related papers (2023-08-19T14:33:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.