Towards LLM Guardrails via Sparse Representation Steering
- URL: http://arxiv.org/abs/2503.16851v1
- Date: Fri, 21 Mar 2025 04:50:25 GMT
- Title: Towards LLM Guardrails via Sparse Representation Steering
- Authors: Zeqing He, Zhibo Wang, Huiyu Xu, Kui Ren,
- Abstract summary: Large Language Models (LLMs) have demonstrated remarkable performance in natural language generation tasks.<n>We propose a sparse encoding-based representation engineering method, named SRE, which decomposes polysemantic activations into a structured, monosemantic feature space.<n>By leveraging sparse autoencoding, our approach isolates and adjusts only task-specific sparse feature dimensions, enabling precise and interpretable steering of model behavior.
- Score: 11.710399901426873
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have demonstrated remarkable performance in natural language generation tasks, yet their uncontrolled outputs pose significant ethical and safety risks. Recently, representation engineering methods have shown promising results in steering model behavior by modifying the rich semantic information encoded in activation vectors. However, due to the difficulty of precisely disentangling semantic directions within high-dimensional representation space, existing approaches suffer from three major limitations: lack of fine-grained control, quality degradation of generated content, and poor interpretability. To address these challenges, we propose a sparse encoding-based representation engineering method, named SRE, which decomposes polysemantic activations into a structured, monosemantic feature space. By leveraging sparse autoencoding, our approach isolates and adjusts only task-specific sparse feature dimensions, enabling precise and interpretable steering of model behavior while preserving content quality. We validate our method on three critical domains, i.e., safety, fairness, and truthfulness using the open-source LLM Gemma-2-2B-it. Experimental results show that SRE achieves superior controllability while maintaining the overall quality of generated content (i.e., controllability and quality), demonstrating its effectiveness as a fine-grained and interpretable activation steering framework.
Related papers
- Enhancing LLM Robustness to Perturbed Instructions: An Empirical Study [8.827173113748701]
We study character- and word-level edits of task-specific instructions, which substantially degrade downstream performance.
We find that, on average, self-denoising achieves substantially higher performance gains than alternative strategies.
arXiv Detail & Related papers (2025-04-03T16:17:56Z) - Joint Localization and Activation Editing for Low-Resource Fine-Tuning [73.64004083269424]
We propose a joint localization and activation editing (JoLA) method.
JoLA learns (1) which heads in the Transformer to edit (2) whether the intervention should be additive, multiplicative, or both and (3) the intervention parameters themselves.
Through evaluations on three benchmarks spanning commonsense reasoning, natural language understanding, and natural language generation, we demonstrate that JoLA consistently outperforms existing methods.
arXiv Detail & Related papers (2025-02-03T09:13:09Z) - LF-Steering: Latent Feature Activation Steering for Enhancing Semantic Consistency in Large Language Models [16.37602070339033]
Large Language Models (LLMs) often generate inconsistent responses when prompted with semantically equivalent paraphrased inputs.<n>We propose LF-Steering, a novel activation steering approach to precisely identify latent feature representations responsible for semantic inconsistency.<n>Our method maps the hidden states of the relevant transformer layer into a sparsely activated, high-dimensional feature space based on a sparse autoencoder.
arXiv Detail & Related papers (2025-01-19T13:06:51Z) - Enhancing Multiple Dimensions of Trustworthiness in LLMs via Sparse Activation Control [44.326363467045496]
Large Language Models (LLMs) have become a critical area of research in Reinforcement Learning from Human Feedback (RLHF)
representation engineering offers a new, training-free approach.
This technique leverages semantic features to control the representation of LLM's intermediate hidden states.
It is difficult to encode various semantic contents, like honesty and safety, into a singular semantic feature.
arXiv Detail & Related papers (2024-11-04T08:36:03Z) - Uniformly Safe RL with Objective Suppression for Multi-Constraint Safety-Critical Applications [73.58451824894568]
The widely adopted CMDP model constrains the risks in expectation, which makes room for dangerous behaviors in long-tail states.
In safety-critical domains, such behaviors could lead to disastrous outcomes.
We propose Objective Suppression, a novel method that adaptively suppresses the task reward maximizing objectives according to a safety critic.
arXiv Detail & Related papers (2024-02-23T23:22:06Z) - Successor Features for Efficient Multisubject Controlled Text Generation [48.37713738712319]
We introduce SF-GEN, which is grounded in two primary concepts: successor features (SFs) and language model rectification.
SF-GEN seamlessly integrates the two to enable dynamic steering of text generation with no need to alter the LLM's parameters.
To the best of our knowledge, our research represents the first application of successor features in text generation.
arXiv Detail & Related papers (2023-11-03T00:17:08Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z) - Hierarchical Disentanglement-Alignment Network for Robust SAR Vehicle
Recognition [18.38295403066007]
HDANet integrates feature disentanglement and alignment into a unified framework.
The proposed method demonstrates impressive robustness across nine operating conditions in the MSTAR dataset.
arXiv Detail & Related papers (2023-04-07T09:11:29Z) - Benchmarking the Robustness of LiDAR Semantic Segmentation Models [78.6597530416523]
In this paper, we aim to comprehensively analyze the robustness of LiDAR semantic segmentation models under various corruptions.
We propose a new benchmark called SemanticKITTI-C, which features 16 out-of-domain LiDAR corruptions in three groups, namely adverse weather, measurement noise and cross-device discrepancy.
We design a robust LiDAR segmentation model (RLSeg) which greatly boosts the robustness with simple but effective modifications.
arXiv Detail & Related papers (2023-01-03T06:47:31Z) - Toward Certified Robustness Against Real-World Distribution Shifts [65.66374339500025]
We train a generative model to learn perturbations from data and define specifications with respect to the output of the learned model.
A unique challenge arising from this setting is that existing verifiers cannot tightly approximate sigmoid activations.
We propose a general meta-algorithm for handling sigmoid activations which leverages classical notions of counter-example-guided abstraction refinement.
arXiv Detail & Related papers (2022-06-08T04:09:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.