論文の概要: FAIT: Fault-Aware Fine-Tuning for Better Code Generation
- arxiv url: http://arxiv.org/abs/2503.16913v1
- Date: Fri, 21 Mar 2025 07:23:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-24 14:58:03.501804
- Title: FAIT: Fault-Aware Fine-Tuning for Better Code Generation
- Title(参考訳): FAIT:コード生成を改善するためのファインチューニング
- Authors: Lishui Fan, Zhongxin Liu, Haoye Wang, Lingfeng Bao, Xin Xia, Shanping Li,
- Abstract要約: 本研究では、命令調整された大規模言語モデルのコード生成を強化するために、FAIT(Fault-Aware Fine-Tuning)を提案する。
本手法は,パス@1の相対的改善率を6.9%向上させる。
改良された6.7B LLMは、GPT-3.5-Turboなどのクローズドソースモデルより優れている。
- 参考スコア(独自算出の注目度): 11.8755180563981
- License:
- Abstract: Modern instruction-tuned large language models (LLMs) have made remarkable progress in code generation. However, these LLMs fine-tuned with standard supervised fine-tuning (SFT) sometimes generate plausible-looking but functionally incorrect code variants. This issue likely stems from the limitation of standard SFT, which treats all tokens equally during optimization and fails to emphasize the error-sensitive segments-specific code differences between correct implementations and similar incorrect variants. To address this problem, we propose Fault-Aware Fine-Tuning (FAIT), a novel fine-tuning technique that enhances LLMs' code generation by (1) extracting multi-granularity (line/token-level) differences between correct and incorrect yet similar implementations to identify error-sensitive segments, and (2) dynamically prioritizing those segments during training via dynamic loss weighting. Through extensive experiments on seven LLMs across three widely-used benchmarks, our method achieves an average relative improvement of 6.9% on pass@1 with just one epoch of training, with some enhanced 6.7B LLMs outperforming closed-source models, e.g., GPT-3.5-Turbo. Furthermore, our fine-tuning technique demonstrates strong generalization with performance improvements ranging from 3.8% to 19.1% across diverse instruction-tuned LLMs, and our ablation studies confirm the contributions of different granularities of differences and loss function components.
- Abstract(参考訳): 命令調整型大規模言語モデル(LLM)は、コード生成において顕著な進歩を遂げた。
しかし、これらのLLMは、標準的な教師付き微調整(SFT)で微調整され、時に可塑性だが機能的に正しくないコードバリアントを生成する。
この問題は、最適化中に全てのトークンを等しく扱い、エラーに敏感なセグメント固有のコード差を強調するのに失敗する標準SFTの制限に起因していると考えられる。
この問題に対処するために, 1) 誤り検出セグメントを識別するために, 誤り検出セグメントと誤り検出セグメントの多粒度(直線/トケンレベル)差を抽出し, 動的損失重み付けによるトレーニング中に, それらのセグメントを動的に優先順位付けすることで, LLM のコード生成を促進する新しいファインチューニング手法であるFact-Aware Fine-Tuning (FAIT)を提案する。
広範に使用されている3つのベンチマークで 7 個の LLM に関する広範な実験を行った結果,パス@1 の相対的改善率は 6.9% であり,トレーニング期間は 1 回に過ぎず,拡張された 6.7B 個の LLM がクローズドソースモデル,例えば GPT-3.5-Turbo より優れていることがわかった。
さらに,本手法は多種多様な命令調整LDMの3.8%から19.1%までの性能向上を図り,差分および損失関数成分の粒度の違いによる寄与について検討した。
関連論文リスト
- LLM2: Let Large Language Models Harness System 2 Reasoning [65.89293674479907]
大規模言語モデル(LLM)は、無数のタスクにまたがって印象的な機能を示してきたが、時には望ましくない出力が得られる。
本稿では LLM とプロセスベースの検証器を組み合わせた新しいフレームワーク LLM2 を紹介する。
LLMs2は妥当な候補を生成するのに責任を持ち、検証者は望ましい出力と望ましくない出力を区別するためにタイムリーなプロセスベースのフィードバックを提供する。
論文 参考訳(メタデータ) (2024-12-29T06:32:36Z) - Adaptive Pruning for Large Language Models with Structural Importance Awareness [66.2690963378878]
大規模言語モデル(LLM)は言語理解と生成能力を大幅に改善した。
LLMは、高い計算およびストレージリソース要求のため、リソース制約のあるエッジデバイスにデプロイするのは難しい。
モデル性能を維持しつつ,計算コストとメモリコストを大幅に削減する構造的適応型プルーニング(SAAP)を提案する。
論文 参考訳(メタデータ) (2024-12-19T18:08:04Z) - Instruct or Interact? Exploring and Eliciting LLMs' Capability in Code Snippet Adaptation Through Prompt Engineering [19.019004855931676]
大規模言語モデル(LLM)は、コード生成タスクにおいて、有望な結果でその有効性を確認した。
再利用指向でコンテキスト依存のコード変更予測タスクであるアダプティブのパフォーマンスはまだ不明だ。
LLMの適応性を引き出すためのインタラクティブなプロンプト手法を提案する。
論文 参考訳(メタデータ) (2024-11-23T09:40:36Z) - PerfCodeGen: Improving Performance of LLM Generated Code with Execution Feedback [78.89596149768458]
大規模言語モデル(LLM)は、ソフトウェア開発タスクを支援するために広く採用されている。
LLM生成コードの性能を向上させるトレーニングフリーフレームワークPerfCodeGenを提案する。
論文 参考訳(メタデータ) (2024-11-18T06:22:38Z) - Large Language Models as Code Executors: An Exploratory Study [29.545321608864295]
本稿では,Large Language Models (LLM) をコードエグゼキュータとして探索する。
OpenAIのo1、GPT-4o、GPT-3.5、DeepSeek、Qwen-Coderなど、さまざまなLLMでこの実現可能性を調べています。
我々は,コードスニペットを行単位で処理し,弱いモデルの精度を平均7.22%向上させるIIP(Iterative Instruction Prompting)技術を導入する。
論文 参考訳(メタデータ) (2024-10-09T08:23:22Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
大規模言語モデル(LLM)は、標準解に比べて短いがより複雑なコードを生成する。
3つのカテゴリと12のサブカテゴリを含む誤ったコードに対するバグの分類を開発し、一般的なバグタイプに対する根本原因を分析する。
そこで本研究では,LLMがバグタイプやコンパイラフィードバックに基づいて生成したコードを批判し,修正することのできる,自己批判を導入した新たな学習自由反復手法を提案する。
論文 参考訳(メタデータ) (2024-07-08T17:27:17Z) - Bypass Back-propagation: Optimization-based Structural Pruning for Large Language Models via Policy Gradient [57.9629676017527]
大規模言語モデルを用いた最適化に基づく構造解析手法を提案する。
我々は,プルーニングモデルの損失を最適化することにより,確率空間におけるプルーニングマスクを直接学習する。
A100 GPUで13Bモデルに対して約35GBのメモリで2.7時間動作させる。
論文 参考訳(メタデータ) (2024-06-15T09:31:03Z) - Multi-Objective Fine-Tuning for Enhanced Program Repair with LLMs [16.890411067079885]
大規模言語モデル(LLM)は、幅広い下流タスクにおいて顕著な機能を示した。
プログラム修復のためのLLMファインチューニングの学習焦点に関する新しい視点を提案する。
我々はMORepairを、サイズやアーキテクチャの異なる4つのオープンソースLCMの微調整に応用する。
論文 参考訳(メタデータ) (2024-04-19T05:36:21Z) - SEED: Customize Large Language Models with Sample-Efficient Adaptation for Code Generation [35.88318116340547]
コード生成のための誤り駆動学習を用いたサンプル効率適応のためのSEEDという新しい適応手法を提案する。
複数のコード生成ベンチマークでPass@1の平均相対改善率は54.7%である。
論文 参考訳(メタデータ) (2024-02-29T16:09:02Z) - Accelerating LLaMA Inference by Enabling Intermediate Layer Decoding via
Instruction Tuning with LITE [62.13435256279566]
大規模言語モデル(LLM)は、様々な自然言語タスクで顕著なパフォーマンスを実現している。
しかし、その大きなサイズは推論を遅く、計算的に高価にする。
最終層の生成能力に影響を与えることなく、これらの層が「良い」生成能力を得ることができることを示す。
論文 参考訳(メタデータ) (2023-10-28T04:07:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。