論文の概要: Neural-Guided Equation Discovery
- arxiv url: http://arxiv.org/abs/2503.16953v1
- Date: Fri, 21 Mar 2025 08:55:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-24 14:57:11.923407
- Title: Neural-Guided Equation Discovery
- Title(参考訳): ニューラルネットワークによる方程式発見
- Authors: Jannis Brugger, Mattia Cerrato, David Richter, Cedric Derstroff, Daniel Maninger, Mira Mezini, Stefan Kramer,
- Abstract要約: ニューラルネットワークを用いた方程式探索の利点と欠点を示す。
ニューラルネットワークによるモンテカルロ木探索(MCTS)
方程式発見システムの望ましい7つの特性を概説する。
- 参考スコア(独自算出の注目度): 3.533347723884203
- License:
- Abstract: Deep learning approaches are becoming increasingly attractive for equation discovery. We show the advantages and disadvantages of using neural-guided equation discovery by giving an overview of recent papers and the results of experiments using our modular equation discovery system MGMT ($\textbf{M}$ulti-Task $\textbf{G}$rammar-Guided $\textbf{M}$onte-Carlo $\textbf{T}$ree Search for Equation Discovery). The system uses neural-guided Monte-Carlo Tree Search (MCTS) and supports both supervised and reinforcement learning, with a search space defined by a context-free grammar. We summarize seven desirable properties of equation discovery systems, emphasizing the importance of embedding tabular data sets for such learning approaches. Using the modular structure of MGMT, we compare seven architectures (among them, RNNs, CNNs, and Transformers) for embedding tabular datasets on the auxiliary task of contrastive learning for tabular data sets on an equation discovery task. For almost all combinations of modules, supervised learning outperforms reinforcement learning. Moreover, our experiments indicate an advantage of using grammar rules as action space instead of tokens. Two adaptations of MCTS -- risk-seeking MCTS and AmEx-MCTS -- can improve equation discovery with that kind of search.
- Abstract(参考訳): ディープラーニングのアプローチは、方程式発見にとってますます魅力的なものになりつつある。
本稿では、最近の論文の概要と、モジュラー方程式発見システムMGMT(\textbf{M}$ulti-Task $\textbf{G}$rammar-Guided $\textbf{M}$onte-Carlo $\textbf{T}$ree Search for Equation Discovery)を用いた実験結果について述べる。
このシステムは、ニューラルネットワークによるモンテカルロ木探索(MCTS)を使用し、教師付き学習と強化学習の両方をサポートし、文脈自由文法で定義された検索空間を持つ。
方程式発見システムの望ましい7つの特性を要約し、そのような学習手法に表形式のデータセットを埋め込むことの重要性を強調した。
MGMTのモジュラー構造を用いて,方程式探索タスクにおける表層データセットのコントラスト学習補助タスクに表層データセットを埋め込む7つのアーキテクチャ(RNN,CNN,Transformer)を比較した。
ほとんどすべてのモジュールの組み合わせに対して、教師あり学習は強化学習よりも優れています。
さらに,本実験は,トークンの代わりに文法規則をアクション空間として利用することの利点を示す。
MCTSの2つの適応 -- リスク探索MCTSとAmEx-MCTS -- は、この種の探索によって方程式発見を改善することができる。
関連論文リスト
- Don't Get Lost in the Trees: Streamlining LLM Reasoning by Overcoming Tree Search Exploration Pitfalls [83.89771461061903]
検証者による木探索アルゴリズムの最近の進歩は、大規模言語モデル(LLM)の推論能力を大幅に向上させた。
検証者による木探索アルゴリズムの最近の進歩は、大規模言語モデル(LLM)の推論能力を大幅に向上させた。
意味論的に等価なコンテンツを持つ冗長な状態による$textitover-Exploration$と、検証器のスコアリングにおける高いばらつきに起因する$textitunder-Exploration$である。
各種木探索アルゴリズムに適合するフレキシブルなプラグアンドプレイシステムであるFETCHを提案する。
論文 参考訳(メタデータ) (2025-02-16T16:12:01Z) - Inverse Entropic Optimal Transport Solves Semi-supervised Learning via Data Likelihood Maximization [65.8915778873691]
条件分布は機械学習の中心的な問題です
ペアデータとペアデータの両方を統合する新しい学習パラダイムを提案する。
我々のアプローチはまた、興味深いことに逆エントロピー最適輸送(OT)と結びついている。
論文 参考訳(メタデータ) (2024-10-03T16:12:59Z) - Discovering Car-following Dynamics from Trajectory Data through Deep Learning [6.549368131882316]
本稿では,変数交叉選択(VIS)法と統合された深部記号回帰(DSR)に基づく表現探索フレームワークを提案する。
本稿では,自動車追従力学モデルの学習における提案手法の性能について述べるとともに,その限界と今後の研究方向性について考察する。
論文 参考訳(メタデータ) (2024-08-01T03:15:08Z) - Learning sum of diverse features: computational hardness and efficient gradient-based training for ridge combinations [40.77319247558742]
目的関数 $f_*:mathbbRdtomathbbR$ を加法構造で学習する際の計算複雑性について検討する。
2層ニューラルネットワークの勾配学習により,$f_*$の大規模なサブセットを効率的に学習できることを実証した。
論文 参考訳(メタデータ) (2024-06-17T17:59:17Z) - Dendritic Self-Organizing Maps for Continual Learning [0.0]
我々は、DendSOM(Dendritic-Self-Organizing Map)と呼ばれる生物学的ニューロンにインスパイアされた新しいアルゴリズムを提案する。
DendSOMは、入力空間の特定の領域からパターンを抽出する単一のSOMからなる。
ベンチマークデータセットでは、古典的なSOMやいくつかの最先端の継続的学習アルゴリズムよりも優れています。
論文 参考訳(メタデータ) (2021-10-18T14:47:19Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
歴史的文脈からビジュアルダイナミクスを学習するための新しいリカレントネットワークであるPredRNNを紹介する。
本手法は,3つの標準データセット上で高い競争結果が得られることを示す。
論文 参考訳(メタデータ) (2021-03-17T08:28:30Z) - BCFNet: A Balanced Collaborative Filtering Network with Attention
Mechanism [106.43103176833371]
協調フィルタリング(CF)ベースの推奨方法が広く研究されている。
BCFNet(Balanced Collaborative Filtering Network)という新しい推薦モデルを提案する。
さらに注意機構は、暗黙のフィードバックの中で隠れた情報をよりよく捉え、ニューラルネットワークの学習能力を強化するように設計されている。
論文 参考訳(メタデータ) (2021-03-10T14:59:23Z) - Deep Reinforcement Learning of Graph Matching [63.469961545293756]
ノードとペアの制約下でのグラフマッチング(GM)は、最適化からコンピュータビジョンまでの領域におけるビルディングブロックである。
GMのための強化学習ソルバを提案する。
rgmはペアワイズグラフ間のノード対応を求める。
本手法は,フロントエンドの特徴抽出と親和性関数学習に焦点をあてるという意味において,従来のディープグラフマッチングモデルと異なる。
論文 参考訳(メタデータ) (2020-12-16T13:48:48Z) - Learning ODE Models with Qualitative Structure Using Gaussian Processes [0.6882042556551611]
多くのコンテキストにおいて、明示的なデータ収集は高価であり、学習アルゴリズムはデータ効率が良くなければならない。
スパースガウス過程を用いて微分方程式のベクトル場を学習する手法を提案する。
この組み合わせにより,外挿性能と長期的挙動が大幅に向上し,計算コストの低減が図られる。
論文 参考訳(メタデータ) (2020-11-10T19:34:07Z) - Deep Metric Structured Learning For Facial Expression Recognition [58.7528672474537]
本研究では,よく定義された構造を持つ組込み部分空間を作成するための深度計量学習モデルを提案する。
これらの部分空間を作成するために、出力空間上にガウス構造を課す新しい損失関数が導入された。
学習した埋め込みは,表現検索や感情認識など,様々な応用に有効であることが実験的に実証された。
論文 参考訳(メタデータ) (2020-01-18T06:23:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。