An Attentive Representative Sample Selection Strategy Combined with Balanced Batch Training for Skin Lesion Segmentation
- URL: http://arxiv.org/abs/2503.17034v1
- Date: Fri, 21 Mar 2025 10:42:22 GMT
- Title: An Attentive Representative Sample Selection Strategy Combined with Balanced Batch Training for Skin Lesion Segmentation
- Authors: Stephen Lloyd-Brown, Susan Francis, Caroline Hoad, Penny Gowland, Karen Mullinger, Andrew French, Xin Chen,
- Abstract summary: Many studies select their training sets at random, which may lead to suboptimal model performance.<n>We use contrasting learning and clustering to extract representative and diverse samples for annotation.
- Score: 2.228316724125797
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An often overlooked problem in medical image segmentation research is the effective selection of training subsets to annotate from a complete set of unlabelled data. Many studies select their training sets at random, which may lead to suboptimal model performance, especially in the minimal supervision setting where each training image has a profound effect on performance outcomes. This work aims to address this issue. We use prototypical contrasting learning and clustering to extract representative and diverse samples for annotation. We improve upon prior works with a bespoke cluster-based image selection process. Additionally, we introduce the concept of unsupervised balanced batch dataloading to medical image segmentation, which aims to improve model learning with minimally annotated data. We evaluated our method on a public skin lesion dataset (ISIC 2018) and compared it to another state-of-the-art data sampling method. Our method achieved superior performance in a low annotation budget scenario.
Related papers
- Enhancing Sample Selection by Cutting Mislabeled Easy Examples [62.13094877228772]
We show that mislabeled examples correctly predicted by the model early in the training process are particularly harmful to model performance.<n>We propose Early Cutting, which employs the model's later training state to re-select the confident subset identified early in training.
arXiv Detail & Related papers (2025-02-12T09:12:45Z) - Integrated Image-Text Based on Semi-supervised Learning for Small Sample Instance Segmentation [1.3157419797035321]
The article proposes a novel small sample instance segmentation solution from the perspective of maximizing the utilization of existing information.
First, it helps the model fully utilize unlabeled data by learning to generate pseudo labels, increasing the number of available samples.
Second, by integrating the features of text and image, more accurate classification results can be obtained.
arXiv Detail & Related papers (2024-10-21T14:44:08Z) - Hybrid Representation-Enhanced Sampling for Bayesian Active Learning in
Musculoskeletal Segmentation of Lower Extremities [0.9287179270753105]
This study introduces a hybrid representation-enhanced sampling strategy that integrates both density and diversity criteria.
Experiments are performed on two lower extremity (LE) datasets of MRI and CT images.
arXiv Detail & Related papers (2023-07-26T06:52:29Z) - Semi-Supervised Learning for hyperspectral images by non parametrically
predicting view assignment [25.198550162904713]
Hyperspectral image (HSI) classification is gaining a lot of momentum in present time because of high inherent spectral information within the images.
Recently, to effectively train the deep learning models with minimal labelled samples, the unlabeled samples are also being leveraged in self-supervised and semi-supervised setting.
In this work, we leverage the idea of semi-supervised learning to assist the discriminative self-supervised pretraining of the models.
arXiv Detail & Related papers (2023-06-19T14:13:56Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
We propose ARCO, a semi-supervised contrastive learning framework with stratified group theory for medical image segmentation.
We first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks.
We experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings.
arXiv Detail & Related papers (2023-02-03T13:50:25Z) - Which Pixel to Annotate: a Label-Efficient Nuclei Segmentation Framework [70.18084425770091]
Deep neural networks have been widely applied in nuclei instance segmentation of H&E stained pathology images.
It is inefficient and unnecessary to label all pixels for a dataset of nuclei images which usually contain similar and redundant patterns.
We propose a novel full nuclei segmentation framework that chooses only a few image patches to be annotated, augments the training set from the selected samples, and achieves nuclei segmentation in a semi-supervised manner.
arXiv Detail & Related papers (2022-12-20T14:53:26Z) - Exemplar Learning for Medical Image Segmentation [38.61378161105941]
We propose an Exemplar Learning-based Synthesis Net (ELSNet) framework for medical image segmentation.
ELSNet introduces two new modules for image segmentation: an exemplar-guided synthesis module and a pixel-prototype based contrastive embedding module.
We conduct experiments on several organ segmentation datasets and present an in-depth analysis.
arXiv Detail & Related papers (2022-04-03T00:10:06Z) - Interpretability-Driven Sample Selection Using Self Supervised Learning
For Disease Classification And Segmentation [4.898744396854313]
We propose a novel sample selection methodology based on deep features leveraging information contained in interpretability saliency maps.
We show our proposed self supervised approach outperforms other approaches in selecting informative samples leading to state of the art performance with fewer samples.
arXiv Detail & Related papers (2021-04-13T10:46:33Z) - Jo-SRC: A Contrastive Approach for Combating Noisy Labels [58.867237220886885]
We propose a noise-robust approach named Jo-SRC (Joint Sample Selection and Model Regularization based on Consistency)
Specifically, we train the network in a contrastive learning manner. Predictions from two different views of each sample are used to estimate its "likelihood" of being clean or out-of-distribution.
arXiv Detail & Related papers (2021-03-24T07:26:07Z) - Unlabeled Data Guided Semi-supervised Histopathology Image Segmentation [34.45302976822067]
Semi-supervised learning (SSL) based on generative methods has been proven to be effective in utilizing diverse image characteristics.
We propose a new data guided generative method for histopathology image segmentation by leveraging the unlabeled data distributions.
Our method is evaluated on glands and nuclei datasets.
arXiv Detail & Related papers (2020-12-17T02:54:19Z) - Semi-Automatic Data Annotation guided by Feature Space Projection [117.9296191012968]
We present a semi-automatic data annotation approach based on suitable feature space projection and semi-supervised label estimation.
We validate our method on the popular MNIST dataset and on images of human intestinal parasites with and without fecal impurities.
Our results demonstrate the added-value of visual analytics tools that combine complementary abilities of humans and machines for more effective machine learning.
arXiv Detail & Related papers (2020-07-27T17:03:50Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
We propose to leverage both labeled and unlabeled data for instance segmentation with improved accuracy by knowledge distillation.
We propose a novel Mask-guided Mean Teacher framework with Perturbation-sensitive Sample Mining.
Experiments show that the proposed method improves the performance significantly compared with the supervised method learned from labeled data only.
arXiv Detail & Related papers (2020-07-21T13:27:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.