Topological order in symmetric blockade structures
- URL: http://arxiv.org/abs/2503.17123v1
- Date: Fri, 21 Mar 2025 13:20:09 GMT
- Title: Topological order in symmetric blockade structures
- Authors: Tobias F. Maier, Hans Peter Büchler, Nicolai Lang,
- Abstract summary: We study two- and three-dimensional structures of two-level systems that interact via a simple blockade potential.<n>Our construction is based on the implementation of a local symmetry on the microscopic level in a system with only two-body interactions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The bottom-up design of strongly interacting quantum materials with prescribed ground state properties is a highly nontrivial task, especially if only simple constituents with realistic two-body interactions are available on the microscopic level. Here we study two- and three-dimensional structures of two-level systems that interact via a simple blockade potential in the presence of a coherent coupling between the two states. For such strongly interacting quantum many-body systems, we introduce the concept of blockade graph automorphisms to construct symmetric blockade structures with strong quantum fluctuations that lead to equal-weight superpositions of tailored states. Drawing from these results, we design a quasi-two-dimensional periodic quantum system that - as we show rigorously - features a topological $\mathbb{Z}_2$ spin liquid as its ground state. Our construction is based on the implementation of a local symmetry on the microscopic level in a system with only two-body interactions.
Related papers
- Symmetric tensor scars with tunable entanglement from volume to area law [0.0]
We study the construction of highly energetic eigenstates with tunable long-range entanglement.<n>We find many exact zero-energy eigenstates for a class of non-integrable spin-1/2 Hamiltonians with two-body correlations.<n>This framework has a natural extension to higher dimensions, where entangled states controlled by lattice geometry and internal symmetries can result in new classes of correlated out-of-equilibrium quantum matter.
arXiv Detail & Related papers (2025-01-23T19:00:03Z) - Edge modes and symmetry-protected topological states in open quantum
systems [0.0]
Topological order offers possibilities for processing quantum information which can be immune to imperfections.
We show robustness of certain aspects of $ZZtimes Z$ symmetry-protected trajectory (SPT) order against a wide class of dissipation channels.
Our work thus proposes a novel framework to study the dynamics of dissipative SPT phases.
arXiv Detail & Related papers (2023-10-13T21:09:52Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [43.80709028066351]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.<n>This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Quantum topology in the ultrastrong coupling regime [0.0]
We show how the delicate interplay between ultrastrong coupling and topological states manifests in a one-dimensional array.
We uncover unusual topological edge states, we introduce a flavour of topological state which we call an anti-edge state, and we reveal the remarkable geometric-dependent renormalizations of the quantum vaccum.
arXiv Detail & Related papers (2022-07-11T15:35:45Z) - Interaction-induced directed transport in quantum chaotic systems [0.0]
Quantum transport can be realized in non-interacting, deterministic, chaotic systems.
This work provides a minimal framework for realizing quantum directed transport in interacting systems.
arXiv Detail & Related papers (2022-06-14T18:00:02Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - Non-standard entanglement structure of local unitary self-dual models as
a saturated situation of repeatability in general probabilistic theories [61.12008553173672]
We show the existence of infinite structures of quantum composite system such that it is self-dual with local unitary symmetry.
We also show the existence of a structure of quantum composite system such that non-orthogonal states in the structure are perfectly distinguishable.
arXiv Detail & Related papers (2021-11-29T23:37:58Z) - Entanglement in highly symmetric multipartite quantum states [0.0]
We present a construction of genuinely entangled multipartite quantum states based on the group theory.
We propose quantum circuits efficiently generating such states, which in general have smaller complexity than the circuits necessary to create fully symmetric states.
arXiv Detail & Related papers (2021-05-26T17:56:37Z) - Quantum anomalous Hall phase in synthetic bilayers via twistless
twistronics [58.720142291102135]
We propose quantum simulators of "twistronic-like" physics based on ultracold atoms and syntheticdimensions.
We show that our system exhibits topologicalband structures under appropriate conditions.
arXiv Detail & Related papers (2020-08-06T19:58:05Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.