Interaction-induced directed transport in quantum chaotic systems
- URL: http://arxiv.org/abs/2206.07063v1
- Date: Tue, 14 Jun 2022 18:00:02 GMT
- Title: Interaction-induced directed transport in quantum chaotic systems
- Authors: Sanku Paul, J. Bharathi Kannan, and M. S. Santhanam
- Abstract summary: Quantum transport can be realized in non-interacting, deterministic, chaotic systems.
This work provides a minimal framework for realizing quantum directed transport in interacting systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum directed transport can be realized in non-interacting, deterministic,
chaotic systems by appropriately breaking the spatio-temporal symmetries in the
potential. In this work, the focus is on the class of interacting quantum
systems whose classical limit is chaotic. In this limit, one subsystem
effectively acts as a source of "noise" to the other leading to temporal
symmetry breaking. Thus, the quantum directed currents can be generated with
two ingredients -- broken spatial symmetry in the potential and presence of
interactions. This is demonstrated in two-body interacting kicked rotor and
kicked Harper models. Unlike earlier schemes employed for single-particle
ratchet currents, this work provides a minimal framework for realizing quantum
directed transport in interacting systems. This can be generalized to many-body
quantum chaotic systems.
Related papers
- Oscillatory dissipative tunneling in an asymmetric double-well potential [32.65699367892846]
Chemical research will benefit from a fully controllable, asymmetric double-well equipped with precise measurement capabilities of the tunneling rates.
Our work paves the way for analog molecule simulators based on quantum superconducting circuits.
arXiv Detail & Related papers (2024-09-19T22:43:07Z) - Suppression of quantum dissipation: A cooperative effect of quantum squeezing and quantum measurement [22.051290654737976]
We propose a scheme for beating environment-induced dissipation in an open two-level system coupled to a parametrically driven cavity.
We demonstrate that, in the presence of the cooperation, the system dynamics can be completely dominated by the effective system-cavity interaction.
This work provides a generic method of dissipation suppression in a variety of quantum mechanical platforms, including natural atoms and superconducting circuits.
arXiv Detail & Related papers (2024-07-12T15:10:44Z) - Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - From Goldilocks to Twin Peaks: multiple optimal regimes for quantum
transport in disordered networks [68.8204255655161]
Open quantum systems theory has been successfully applied to predict the existence of environmental noise-assisted quantum transport.
This paper shows that a consistent subset of physically modelled transport networks can have at least two ENAQT peaks in their steady state transport efficiency.
arXiv Detail & Related papers (2022-10-21T10:57:16Z) - Quantum nonreciprocal interactions via dissipative gauge symmetry [18.218574433422535]
One-way nonreciprocal interactions between two quantum systems are typically described by a cascaded quantum master equation.
We present a new approach for obtaining nonreciprocal quantum interactions that is completely distinct from cascaded quantum systems.
arXiv Detail & Related papers (2022-03-17T15:34:40Z) - Dynamics of a multipartite hybrid quantum system with beamsplitter,
dipole-dipole, and Ising interactions [0.0]
We make use of one such hybrid bipartite quantum model, with one subsystem made of a pair of qubits and another comprising a pair of oscillators.
Our basic model is the standard double Jaynes-Cummings system, which is known to support both entanglement transfer and entanglement sudden death.
We show that compared to the beamsplitter or dipole-dipole interaction, the Ising interaction can have a significant positive impact on entanglement sudden death and birth.
arXiv Detail & Related papers (2021-12-21T21:12:08Z) - Trajectories without quantum uncertainties in composite systems with
disparate energy spectra [0.0]
measurement-induced quantum back action can be eliminated in composite systems by engineering quantum-mechanics-free subspaces.
The utility of the concept has been limited by the requirement of close proximity of the resonance frequencies of the system of interest and the negative-mass reference system.
Here we propose a general approach which overcomes these limitations by employing periodic modulation of the driving fields.
arXiv Detail & Related papers (2021-11-04T09:12:28Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - The quantum solitons atomtronic interference device [0.0]
We study a quantum many-body system of attracting bosons confined in a ring-shaped potential and interrupted by a weak link.
We demonstrate that the system is characterized by the specific interplay between the interaction and the strength of the weak link.
arXiv Detail & Related papers (2020-12-11T12:04:22Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Decoherence Effects Break Reciprocity in Matter Transport [0.0]
We present nanoscale devices in which decoherence, modeled by random quantum jumps, produces fundamentally novel phenomena by interrupting the unitary dynamics of electron wave packets.
In these devices, the inelastic interaction of itinerant electrons with impurities acting as electron trapping centers leads to a novel steady state characterized by partial charge separation between the two leads.
The interface between the quantum and the classical worlds therefore provides a novel transport regime of value for the realization of a new category of mesoscopic electronic devices.
arXiv Detail & Related papers (2019-12-27T00:07:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.