論文の概要: The Cost of Local and Global Fairness in Federated Learning
- arxiv url: http://arxiv.org/abs/2503.22762v1
- Date: Thu, 27 Mar 2025 18:37:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 14:40:00.553773
- Title: The Cost of Local and Global Fairness in Federated Learning
- Title(参考訳): フェデレーションラーニングにおける地域・グローバルフェアネスのコスト
- Authors: Yuying Duan, Gelei Xu, Yiyu Shi, Michael Lemmon,
- Abstract要約: フェデレートラーニング(FL)における公平性の2つの概念
本稿では,マルチクラスFL設定において,特定のグローバル・ローカル・フェアネスのレベルを達成できない最小限の精度について検討する。
- 参考スコア(独自算出の注目度): 4.088196820932921
- License:
- Abstract: With the emerging application of Federated Learning (FL) in finance, hiring and healthcare, FL models are regulated to be fair, preventing disparities with respect to legally protected attributes such as race or gender. Two concepts of fairness are important in FL: global and local fairness. Global fairness addresses the disparity across the entire population and local fairness is concerned with the disparity within each client. Prior fair FL frameworks have improved either global or local fairness without considering both. Furthermore, while the majority of studies on fair FL focuses on binary settings, many real-world applications are multi-class problems. This paper proposes a framework that investigates the minimum accuracy lost for enforcing a specified level of global and local fairness in multi-class FL settings. Our framework leads to a simple post-processing algorithm that derives fair outcome predictors from the Bayesian optimal score functions. Experimental results show that our algorithm outperforms the current state of the art (SOTA) with regard to the accuracy-fairness tradoffs, computational and communication costs. Codes are available at: https://github.com/papersubmission678/The-cost-of-local-and-global-fairness-in-FL .
- Abstract(参考訳): 金融、雇用、医療におけるフェデレートラーニング(FL)の登場に伴い、FLモデルは公正であることが規制され、人種や性別といった法的に保護された属性に対する格差が防止される。
FLでは、大域的および局所的公正という2つのフェアネスの概念が重要である。
グローバルフェアネスは全人口の格差に対処し、地域フェアネスは各顧客内の格差に関係している。
以前のフェアなFLフレームワークは、両方を考慮せずに、グローバルまたはローカルなフェアネスを改善した。
さらに、フェアFLの研究の大半はバイナリ設定に焦点を当てているが、現実のアプリケーションの多くはマルチクラス問題である。
本稿では,マルチクラスFL設定において,特定のグローバル・ローカル・フェアネスのレベルを達成できない最小限の精度について検討する。
提案手法は,ベイズ最適スコア関数から適切な結果予測器を導出する単純な後処理アルゴリズムを導出する。
実験の結果,提案アルゴリズムは,精度・公平性トラドオフ,計算・通信コストに関して,現在のSOTA(State-of-the-art)よりも優れていた。
コードは以下の通りである。 https://github.com/papersubmission678/The- Cost-of-local-and-global-fairness-in-FL 。
関連論文リスト
- WassFFed: Wasserstein Fair Federated Learning [31.135784690264888]
Federated Learning (FL)は、ユーザのデータをクライアント間で共有できないシナリオに対処するためのトレーニングアプローチを採用している。
本稿では,Wasserstein Fair Federated Learningフレームワーク,すなわちWassFFedを提案する。
論文 参考訳(メタデータ) (2024-11-11T11:26:22Z) - Can We Theoretically Quantify the Impacts of Local Updates on the Generalization Performance of Federated Learning? [50.03434441234569]
フェデレートラーニング(FL)は、直接データ共有を必要とせず、さまざまなサイトで機械学習モデルをトレーニングする効果により、大きな人気を集めている。
局所的な更新を伴うFLは通信効率のよい分散学習フレームワークであることが様々なアルゴリズムによって示されているが、局所的な更新によるFLの一般化性能は比較的低い。
論文 参考訳(メタデータ) (2024-09-05T19:00:18Z) - Locally Estimated Global Perturbations are Better than Local Perturbations for Federated Sharpness-aware Minimization [81.32266996009575]
フェデレートラーニング(FL)では、クライアント間の複数ステップの更新とデータの均一性が、よりシャープなミニマによるロスランドスケープにつながることが多い。
クライアント側におけるグローバルな摂動方向を局所的に推定する新しいアルゴリズムであるFedLESAMを提案する。
論文 参考訳(メタデータ) (2024-05-29T08:46:21Z) - Post-Fair Federated Learning: Achieving Group and Community Fairness in Federated Learning via Post-processing [2.361519691494246]
フェアネスという概念は、グループフェアネスとコミュニティフェアネスという、連合学習の重要な問題として現れてきた。
本稿では,ポストFFL(Post-FFL)と呼ばれる,処理後のフェアフェデレーション学習フレームワークを提案し,分析する。
論文 参考訳(メタデータ) (2024-05-28T03:26:00Z) - Multi-dimensional Fair Federated Learning [25.07463977553212]
フェデレートラーニング(FL)は、分散データからモデルをトレーニングするための、有望な協調的でセキュアなパラダイムとして登場した。
群フェアネスとクライアントフェアネスは、FLにとって重要である2次元のフェアネスである。
グループフェアネスとクライアントフェアネスを同時に達成するために,mFairFLと呼ばれる手法を提案する。
論文 参考訳(メタデータ) (2023-12-09T11:37:30Z) - Rethinking Client Drift in Federated Learning: A Logit Perspective [125.35844582366441]
フェデレートラーニング(FL)は、複数のクライアントが分散した方法で協調的に学習し、プライバシ保護を可能にする。
その結果,局所モデルとグローバルモデルとのロジット差は,モデルが継続的に更新されるにつれて増大することがわかった。
我々はFedCSDと呼ばれる新しいアルゴリズムを提案する。FedCSDは、ローカルモデルとグローバルモデルを調整するためのフェデレーションフレームワークにおけるクラスプロトタイプの類似度蒸留である。
論文 参考訳(メタデータ) (2023-08-20T04:41:01Z) - Demystifying Local and Global Fairness Trade-offs in Federated Learning
Using Partial Information Decomposition [7.918307236588161]
本研究は,フェデレートラーニング(FL)におけるグループフェアネストレードオフに対する情報理論的視点を示す。
FLでは、$textitUnique Disparity$, $textitRedundant Disparity$, $textitMasked Disparity$という、不公平な3つのソースを特定します。
グローバル・フェアネスとローカル・フェアネスのトレードオフに関する根本的な制限を導き、彼らが同意するか、意見が一致しないかを強調します。
論文 参考訳(メタデータ) (2023-07-21T03:41:55Z) - Understanding How Consistency Works in Federated Learning via Stage-wise
Relaxed Initialization [84.42306265220274]
フェデレートラーニング(Federated Learning, FL)は、大規模なローカルクライアントを協調してグローバルモデルをトレーニングする分散パラダイムである。
従来の研究は、FLがローカルクライアント間の矛盾した最適性によって引き起こされるクライアント・ドリフトの問題に悩まされていることを暗黙的に研究してきた。
FLにおけるクライアントドリフトの負の影響を緩和し,その物質を探索するために,我々はまず,効率的なFLアルゴリズム textitFedInit を設計する。
論文 参考訳(メタデータ) (2023-06-09T06:55:15Z) - How Robust is Your Fairness? Evaluating and Sustaining Fairness under
Unseen Distribution Shifts [107.72786199113183]
CUMA(CUrvature Matching)と呼ばれる新しいフェアネス学習手法を提案する。
CUMAは、未知の分布シフトを持つ未知の領域に一般化可能な頑健な公正性を達成する。
提案手法を3つの人気フェアネスデータセットで評価する。
論文 参考訳(メタデータ) (2022-07-04T02:37:50Z) - Proportional Fairness in Federated Learning [27.086313029073683]
PropFairは、フェデレート学習において、比例的に公平な解を見つけるための、新しく簡単に実装できるアルゴリズムである。
PropFairはおよそPFソリューションを見つけることができ、すべてのクライアントの平均的なパフォーマンスと最悪の10%のクライアントのバランスがとれることを実証します。
論文 参考訳(メタデータ) (2022-02-03T16:28:04Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。