論文の概要: Multi-timescale time encoding for CNN prediction of Fenna-Matthews-Olson energy-transfer dynamics
- arxiv url: http://arxiv.org/abs/2503.17430v4
- Date: Tue, 26 Aug 2025 04:12:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-27 17:42:38.457
- Title: Multi-timescale time encoding for CNN prediction of Fenna-Matthews-Olson energy-transfer dynamics
- Title(参考訳): Fenna-Matthews-Olsonエネルギー移動ダイナミクスのCNN予測のためのマルチスケール時間符号化
- Authors: Shun-Cai Zhao, Yi-Meng Huang, Yi-Fan Yang, Zi-Ran Zhao,
- Abstract要約: システムパラメータと余剰時間を直接励起エネルギー変換集団に符号化する非再帰畳み込みニューラルネットワークを開発した。
ネットワークは、さまざまな再編成エネルギー、入浴率、温度の0sim100 ps$のダイナミクスを正確に予測する。
- 参考スコア(独自算出の注目度): 4.040694711418461
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Machine learning simulations of open quantum dynamics often rely on recursive predictors that accumulate error. We develop a non-recursive convolutional neural networks (CNNs) that maps system parameters and a redundant time encoding directly to excitation-energy-transfer populations in the Fenna-Matthews-Olson complex. The encoding-modified logistic plus $\tanh$ functions-normalizes time and resolves fast, transitional, and quasi-steady regimes, while physics-informed labels enforce population conservation and inter-site consistency. Trained only on $0\sim 7 ps$ reference trajectories generated with a Lindblad model in QuTiP, the network accurately predicts $0\sim100 ps$ dynamics across a range of reorganization energies, bath rates, and temperatures. Beyond $20 ps$, the absolute relative error remains below 0.05, demonstrating stable long-time extrapolation. By avoiding step-by-step recursion, the method suppresses error accumulation and generalizes across timescales. These results show that redundant time encoding enables data-efficient inference of long-time quantum dissipative dynamics in realistic pigment-protein complexes, and may aid the data-driven design of light-harvesting materials.
- Abstract(参考訳): オープン量子力学の機械学習シミュレーションは、しばしばエラーを蓄積する再帰予測器に依存する。
我々は,Fenna-Matthews-Olson複合体において,システムパラメータと余分な時間エンコーディングを直接励起エネルギー変換集団にマッピングする非再帰畳み込みニューラルネットワーク(CNN)を開発した。
符号化修飾ロジスティックプラス$\tanh$関数は時間正規化し、高速、過渡的、準定常なレジームを解消する。
QuTiPのLindbladモデルで生成された参照トラジェクトリ0\sim 7 ps$でのみトレーニングされたこのネットワークは、さまざまな再編成エネルギー、入浴率、温度で0\sim100 ps$のダイナミクスを正確に予測する。
20 ps$を超える絶対相対誤差は0.05以下であり、安定な長時間外挿を示す。
ステップバイステップの再帰を避けることで、エラーの蓄積を抑制し、時間スケールにわたって一般化する。
これらの結果から, 余剰時間符号化により, 現実的な色素タンパク質複合体における長期量子散逸ダイナミクスをデータ効率で推定することが可能であり, 光ハーベスティング材料のデータ駆動設計に役立つ可能性が示唆された。
関連論文リスト
- Fractional Spike Differential Equations Neural Network with Efficient Adjoint Parameters Training [63.3991315762955]
スパイキングニューラルネットワーク(SNN)は、生物学的ニューロンからインスピレーションを得て、脳に似た計算の現実的なモデルを作成する。
既存のほとんどのSNNは、マルコフ特性を持つ一階常微分方程式(ODE)によってモデル化された、神経細胞膜電圧ダイナミクスの単一時間定数を仮定している。
本研究では, 膜電圧およびスパイク列車の長期依存性を分数次力学により捉えるフラクタルSPIKE微分方程式ニューラルネットワーク (fspikeDE) を提案する。
論文 参考訳(メタデータ) (2025-07-22T18:20:56Z) - Langevin Flows for Modeling Neural Latent Dynamics [81.81271685018284]
逐次変分自動エンコーダであるLangevinFlowを導入し、潜伏変数の時間的進化をアンダーダム化したLangevin方程式で制御する。
われわれのアプローチは、慣性、減衰、学習されたポテンシャル関数、力などの物理的事前を組み込んで、ニューラルネットワークにおける自律的および非自律的プロセスの両方を表現する。
本手法は,ロレンツ誘引器によって生成される合成神経集団に対する最先端のベースラインより優れる。
論文 参考訳(メタデータ) (2025-07-15T17:57:48Z) - Neuromorphic Wireless Split Computing with Resonate-and-Fire Neurons [69.73249913506042]
本稿では、共振器(RF)ニューロンを用いて時間領域信号を直接処理する無線スプリットコンピューティングアーキテクチャについて検討する。
可変周波数で共鳴することにより、RFニューロンは低スパイク活性を維持しながら時間局在スペクトル特徴を抽出する。
実験の結果,提案したRF-SNNアーキテクチャは従来のLIF-SNNやANNと同等の精度を達成できることがわかった。
論文 参考訳(メタデータ) (2025-06-24T21:14:59Z) - Physics-inspired Energy Transition Neural Network for Sequence Learning [14.111325019623596]
本研究では、純粋なRNNの能力について検討し、その長期学習メカニズムを再評価する。
時間とともにエネルギーの変化を追跡する物理エネルギー遷移モデルにインスパイアされた我々は、Physics-inspired Energy transition Neural Network (PETNN)と呼ばれる効果的なリカレント構造を提案する。
本研究では,現在Transformerが支配しているフィールドにおいて,効率的なリカレントニューラルネットワーク開発の可能性を明らかにする。
論文 参考訳(メタデータ) (2025-05-06T08:07:15Z) - Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
本稿では,高精度かつエネルギー効率の高い単発多次元高調波検索のための変換に基づくニューロモルフィックアルゴリズムの可能性について検討する。
複雑な値の畳み込み層と活性化をスパイクニューラルネットワーク(SNN)に変換する新しい手法を開発した。
変換されたSNNは、元のCNNに比べて性能が低下し、ほぼ5倍の電力効率を実現している。
論文 参考訳(メタデータ) (2024-12-05T09:41:33Z) - Enhancing Open Quantum Dynamics Simulations Using Neural Network-Based Non-Markovian Stochastic Schrödinger Equation Method [2.9413085575648235]
ニューラルネットワーク技術と非マルコフシュロディンガー方程式のシミュレーションを組み合わせる手法を提案する。
このアプローチは、特に低温での長時間シミュレーションに必要な軌道の数を著しく減少させる。
論文 参考訳(メタデータ) (2024-11-24T16:57:07Z) - A short trajectory is all you need: A transformer-based model for long-time dissipative quantum dynamics [0.0]
深層人工知能ニューラルネットワークは、散逸環境に結合した量子システムの長時間の人口動態を予測することができることを示す。
我々のモデルは、リカレントニューラルネットワークのような古典的な予測モデルよりも正確です。
論文 参考訳(メタデータ) (2024-09-17T16:17:52Z) - Neuroevolving Electronic Dynamical Networks [0.0]
ニューロ進化(Neuroevolution)は、自然選択によって人工ニューラルネットワークの性能を改良するために進化的アルゴリズムを適用する方法である。
連続時間リカレントニューラルネットワーク(CTRNN)の適合性評価は、時間と計算コストがかかる可能性がある。
フィールドプログラマブルゲートアレイ(FPGA)は、高性能で消費電力の少ないため、ますます人気が高まっている。
論文 参考訳(メタデータ) (2024-04-06T10:54:35Z) - EMN: Brain-inspired Elastic Memory Network for Quick Domain Adaptive Feature Mapping [57.197694698750404]
本稿では,特徴と予測のマッピングを高速に微調整するための,勾配のない新しいElastic Memory Networkを提案する。
EMNはランダムに結合したニューロンを用いて特徴とラベルの関連を記憶し、ネットワーク内のシグナルはインパルスとして伝播する。
EMNは、従来のドメイン適応手法の1%以下のタイミングコストしか必要とせず、最大10%の性能向上を達成することができる。
論文 参考訳(メタデータ) (2024-02-04T09:58:17Z) - Automatic Evolution of Machine-Learning based Quantum Dynamics with
Uncertainty Analysis [4.629634111796585]
長期記憶リカレントニューラルネットワーク(LSTM-RNN)モデルは、長期量子力学をシミュレートするために用いられる。
この研究は、オープン量子システムの動的進化をシミュレートする効果的な機械学習アプローチを構築する。
論文 参考訳(メタデータ) (2022-05-07T08:53:55Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
本稿では,ニューラル平均場(NMF)ダイナミクスを用いた新しい学習フレームワークを提案する。
我々のフレームワークは拡散ネットワークの構造とノード感染確率の進化を同時に学習することができる。
論文 参考訳(メタデータ) (2021-06-03T00:02:05Z) - Multi-Tones' Phase Coding (MTPC) of Interaural Time Difference by
Spiking Neural Network [68.43026108936029]
雑音の多い実環境下での正確な音像定位のための純粋スパイクニューラルネットワーク(SNN)に基づく計算モデルを提案する。
このアルゴリズムを,マイクロホンアレイを用いたリアルタイムロボットシステムに実装する。
実験の結果, 平均誤差方位は13度であり, 音源定位に対する他の生物学的に妥当なニューロモルフィックアプローチの精度を上回っていることがわかった。
論文 参考訳(メタデータ) (2020-07-07T08:22:56Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z) - Flexible Transmitter Network [84.90891046882213]
現在のニューラルネットワークはMPモデルに基づいて構築されており、通常はニューロンを他のニューロンから受信した信号の実際の重み付け集約上での活性化関数の実行として定式化する。
本稿では,フレキシブル・トランスミッタ(FT)モデルを提案する。
本稿では、最も一般的な完全接続型フィードフォワードアーキテクチャ上に構築された、フレキシブルトランスミッタネットワーク(FTNet)について述べる。
論文 参考訳(メタデータ) (2020-04-08T06:55:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。