論文の概要: Communities in the Kuramoto Model: Dynamics and Detection via Path Signatures
- arxiv url: http://arxiv.org/abs/2503.17546v2
- Date: Tue, 25 Mar 2025 14:02:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-26 10:44:01.365694
- Title: Communities in the Kuramoto Model: Dynamics and Detection via Path Signatures
- Title(参考訳): 倉本モデルにおけるコミュニティ:経路シグナチャによるダイナミクスと検出
- Authors: Tâm Johan Nguyên, Darrick Lee, Bernadette Jana Stolz,
- Abstract要約: この問題を解決するために,連続経路の幾何学的および時間的特性を符号化する数学的枠組みを提案する。
パスシグネチャは、動的データの再パラメータ化不変な特徴を提供する。
本研究では,観測時系列から構造的コミュニティを正確に復元する,署名に基づく新しいコミュニティ検出アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 1.024113475677323
- License:
- Abstract: The behavior of multivariate dynamical processes is often governed by underlying structural connections that relate the components of the system. For example, brain activity which is often measured via time series is determined by an underlying structural graph, where nodes represent neurons or brain regions and edges represent cortical connectivity. Existing methods for inferring structural connections from observed dynamics, such as correlation-based or spectral techniques, may fail to fully capture complex relationships in high-dimensional time series in an interpretable way. Here, we propose the use of path signatures a mathematical framework that encodes geometric and temporal properties of continuous paths to address this problem. Path signatures provide a reparametrization-invariant characterization of dynamical data and, in particular, can be used to compute the lead matrix which reveals lead-lag phenomena. We showcase our approach on time series from coupled oscillators in the Kuramoto model defined on a stochastic block model graph, termed the Kuramoto stochastic block model (KSBM). Using mean-field theory and Gaussian approximations, we analytically derive reduced models of KSBM dynamics in different temporal regimes and theoretically characterize the lead matrix in these settings. Leveraging these insights, we propose a novel signature-based community detection algorithm, achieving exact recovery of structural communities from observed time series in multiple KSBM instances. Our results demonstrate that path signatures provide a novel perspective on analyzing complex neural data and other high-dimensional systems, explicitly exploiting temporal functional relationships to infer underlying structure.
- Abstract(参考訳): 多変量過程の挙動は、しばしばシステムの構成要素を関連づける基盤となる構造的接続によって制御される。
例えば、時系列を通してしばしば測定される脳の活動は、ニューロンや脳の領域を表す構造グラフによって決定され、エッジは皮質の接続性を表す。
相関法やスペクトル法のような観測力学から構造的接続を推定する既存の方法は、高次元時系列における複雑な関係を解釈可能な方法で完全に捉えることができない。
本稿では,この問題を解決するために連続経路の幾何学的および時間的特性を符号化する数学的枠組みとしてパスシグネチャの利用を提案する。
経路シグネチャは、動的データの再パラメータ化不変な特性を提供し、特にリードラグ現象を示すリード行列の計算に使用することができる。
我々は,倉本確率ブロックモデル (KSBM) と呼ばれる確率ブロックモデルグラフ上で定義された倉本モデルにおいて,結合振動子から時系列へのアプローチを示す。
平均場理論とガウス近似を用いて、異なる時間的条件下でのKSBMダイナミクスの縮小モデルを解析的に導出し、これらの設定で鉛行列を理論的に特徴づける。
これらの知見を生かして,複数のKSBMインスタンスで観測された時系列から構造的コミュニティを正確に回復する,署名に基づく新しいコミュニティ検出アルゴリズムを提案する。
その結果,経路シグネチャは複雑なニューラルネットワークや他の高次元システムの解析に新たな視点を与え,その基盤構造を推測するために時間的機能的関係を明示的に活用することを示した。
関連論文リスト
- Graph Neural Flows for Unveiling Systemic Interactions Among Irregularly Sampled Time Series [5.460420960898444]
我々は不規則な時間点で観測された時系列の系統的相互作用を明らかにするグラフベースモデルを開発した。
時系列分類や予測など,いくつかの課題に対するアプローチの有効性を検証し,その有効性を実証する。
論文 参考訳(メタデータ) (2024-10-17T21:10:39Z) - Neural Symbolic Regression of Complex Network Dynamics [28.356824329954495]
そこで本研究では,物理インスパイアされたニューラルダイナミクス回帰(PI-NDSR)を用いて,力学の記号表現を自動的に学習する手法を提案する。
本手法は, 種々のダイナミックスから生成された合成データセットと, 病気の拡散に関する実際のデータセットについて検討する。
論文 参考訳(メタデータ) (2024-10-15T02:02:30Z) - Clustering Time-Evolving Networks Using the Spatio-Temporal Graph Laplacian [0.8643517734716606]
我々は既存のスペクトルアルゴリズムを一般化し、時間変化のあるグラフ構造におけるコミュニティを特定し解析する。
テンポラル指向グラフ Laplacian は、有向および無向クラスタの時間経過に伴うクラスタ構造進化の明確な解釈を可能にすることを示す。
論文 参考訳(メタデータ) (2024-07-12T14:31:54Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - Causal Temporal Regime Structure Learning [49.77103348208835]
本稿では,DAG(Directed Acyclic Graph)を並列に学習する新しい手法であるCASTORを提案する。
我々は我々の枠組みの中で体制とDAGの識別可能性を確立する。
実験により、CASTORは既存の因果発見モデルより一貫して優れていることが示された。
論文 参考訳(メタデータ) (2023-11-02T17:26:49Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - GDBN: a Graph Neural Network Approach to Dynamic Bayesian Network [7.876789380671075]
スパースDAGの学習を目的としたスコアに基づくグラフニューラルネットワーク手法を提案する。
グラフニューラルネットワークを用いた手法は,動的ベイジアンネットワーク推論を用いた他の最先端手法よりも優れていた。
論文 参考訳(メタデータ) (2023-01-28T02:49:13Z) - Learning the Evolutionary and Multi-scale Graph Structure for
Multivariate Time Series Forecasting [50.901984244738806]
時系列の進化的・マルチスケール相互作用をモデル化する方法を示す。
特に、まず、拡張畳み込みと協調して、スケール固有の相関を捉える階層グラフ構造を提供する。
最終的な予測を得るために上記のコンポーネントを統合するために、統合ニューラルネットワークが提供される。
論文 参考訳(メタデータ) (2022-06-28T08:11:12Z) - Bayesian Inference of Stochastic Dynamical Networks [0.0]
本稿では,ネットワークトポロジと内部ダイナミクスを学習するための新しい手法を提案する。
グループスパースベイズ学習(GSBL)、BINGO、カーネルベースの方法、dynGENIE3、genIE3、ARNIと比較される。
本手法は,グループスパースベイズ学習 (GSBL), BINGO, kernel-based method, dynGENIE3, GENIE3, ARNI と比較して,最先端の性能を実現する。
論文 参考訳(メタデータ) (2022-06-02T03:22:34Z) - Supporting Optimal Phase Space Reconstructions Using Neural Network
Architecture for Time Series Modeling [68.8204255655161]
位相空間特性を暗黙的に学習する機構を持つ人工ニューラルネットワークを提案する。
私たちのアプローチは、ほとんどの最先端戦略と同じくらいの競争力があるか、あるいは優れているかのどちらかです。
論文 参考訳(メタデータ) (2020-06-19T21:04:47Z) - Learned Factor Graphs for Inference from Stationary Time Sequences [107.63351413549992]
定常時間列のためのモデルベースアルゴリズムとデータ駆動型MLツールを組み合わせたフレームワークを提案する。
ニューラルネットワークは、時系列の分布を記述する因子グラフの特定のコンポーネントを別々に学習するために開発された。
本稿では,学習された定常因子グラフに基づく推論アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-05T07:06:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。