論文の概要: A Modular Dataset to Demonstrate LLM Abstraction Capability
- arxiv url: http://arxiv.org/abs/2503.17645v1
- Date: Sat, 22 Mar 2025 04:25:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:38:20.681449
- Title: A Modular Dataset to Demonstrate LLM Abstraction Capability
- Title(参考訳): LLM抽象能力を実証するモジュールデータセット
- Authors: Adam Atanas, Kai Liu,
- Abstract要約: 大きな言語モデル(LLM)は印象的な能力を示すが、幻覚や論理の欠陥による推論エラーに苦慮している。
ArrangementPuzzleは、構造化されたソリューションと段階的正当性の自動検証を備えた、新しいパズルデータセットである。
このデータセット上で, LLMアクティベーションに関する分類器モデルを訓練した結果, 推論精度の予測において80%以上の精度が得られた。
- 参考スコア(独自算出の注目度): 3.0899016152680754
- License:
- Abstract: Large language models (LLMs) exhibit impressive capabilities but struggle with reasoning errors due to hallucinations and flawed logic. To investigate their internal representations of reasoning, we introduce ArrangementPuzzle, a novel puzzle dataset with structured solutions and automated stepwise correctness verification. We trained a classifier model on LLM activations on this dataset and found that it achieved over 80% accuracy in predicting reasoning correctness, implying that LLMs internally distinguish between correct and incorrect reasoning steps, with the strongest representations in middle-late Transformer layers. Further analysis reveals that LLMs encode abstract reasoning concepts within the middle activation layers of the transformer architecture, distinguishing logical from semantic equivalence. These findings provide insights into LLM reasoning mechanisms and contribute to improving AI reliability and interpretability, thereby offering the possibility to manipulate and refine LLM reasoning.
- Abstract(参考訳): 大きな言語モデル(LLM)は印象的な能力を示すが、幻覚や論理の欠陥による推論エラーに苦慮している。
推論の内部表現を調べるために、構造化された解と段階的正当性の自動検証を備えた新しいパズルデータセットArrangementPuzzleを導入する。
このデータセット上で, LLMのアクティベーションに関する分類器モデルを訓練した結果, LLMの精度が80%以上向上し, 中間層トランスフォーマー層における最強表現を用いて, LLMが内部的に正しい推論ステップと間違った推論ステップを区別できることが示唆された。
さらなる分析により、LLMはトランスフォーマーアーキテクチャの中間活性化層内の抽象的推論概念を符号化し、意味論的同値と論理的区別を行うことが明らかとなった。
これらの知見はLLM推論機構の洞察を与え、AIの信頼性と解釈可能性の向上に貢献し、LLM推論を操作および洗練する可能性を提供する。
関連論文リスト
- Provably Transformers Harness Multi-Concept Word Semantics for Efficient In-Context Learning [53.685764040547625]
トランスフォーマーベースの大規模言語モデル(LLM)は、卓越した創造力と出現能力を示している。
この研究は、トランスフォーマーが単語のマルチコンセプトセマンティクスをどのように活用し、強力なICLと優れたアウト・オブ・ディストリビューションICL能力を実現するかを示すための数学的解析を提供する。
論文 参考訳(メタデータ) (2024-11-04T15:54:32Z) - Proof of Thought : Neurosymbolic Program Synthesis allows Robust and Interpretable Reasoning [1.3003982724617653]
大規模言語モデル(LLM)は自然言語処理に革命をもたらしたが、一貫性のない推論に苦戦している。
本研究では,LLM出力の信頼性と透明性を高めるフレームワークであるProof of Thoughtを紹介する。
主な貢献は、論理的整合性を高めるためのソート管理を備えた堅牢な型システム、事実的知識と推論的知識を明確に区別するための規則の明示である。
論文 参考訳(メタデータ) (2024-09-25T18:35:45Z) - Logic-Enhanced Language Model Agents for Trustworthy Social Simulations [3.5083201638203154]
本研究では,人間のインタラクションモデルとしてのゲーム理論シナリオにおける意思決定に焦点を当てた。
本稿では,社会シミュレーションの信頼性を高める新しいアプローチである論理強化言語モデルエージェント(LELMA)フレームワークを紹介する。
論文 参考訳(メタデータ) (2024-08-28T18:25:35Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - Misinforming LLMs: vulnerabilities, challenges and opportunities [4.54019093815234]
大規模言語モデル(LLM)は自然言語処理において大きな進歩を遂げているが、その基盤となるメカニズムはしばしば誤解されている。
本稿では,現在のLLMアーキテクチャは,単語埋め込みベクトルの逐次パターンの相関に依存するため,本質的に不確実であると主張している。
生成トランスフォーマーベースのモデルとファクトベースと論理プログラミング言語を組み合わせる研究は、信頼できるLLMの開発に繋がる可能性がある。
論文 参考訳(メタデータ) (2024-08-02T10:35:49Z) - Potential and Limitations of LLMs in Capturing Structured Semantics: A Case Study on SRL [78.80673954827773]
大きな言語モデル(LLM)は、言語理解を高め、解釈可能性を改善し、バイアスを減らすために構造化セマンティクスをキャプチャする上で重要な役割を果たす。
セマンティック・ロール・ラベルリング(SRL)を,構造化意味論を抽出するLLMの能力を探るための基本課題として用いることを提案する。
LLMは実際にセマンティック構造をキャプチャすることができ、スケールアップは常にポテンシャルを反映するわけではない。
エラーのかなりの重複は、LLMと訓練されていない人間の両方によって行われ、全てのエラーの約30%を占めることに私たちは驚いています。
論文 参考訳(メタデータ) (2024-05-10T11:44:05Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
大規模言語モデル(LLM)から生成されたテキストの真偽を特徴付ける方法と予測法について検討する。
モデルアクティベーションの局所固有次元 (LID) を用いて, 内部アクティベーションを調査し, LLMの真偽を定量化する。
論文 参考訳(メタデータ) (2024-02-28T04:56:21Z) - DiLA: Enhancing LLM Tool Learning with Differential Logic Layer [11.810200077863172]
本稿では,ネットワーク層の前方・後方通過に論理的制約を組み込むディファレンシャル・ロジック・レイヤ支援言語モデリング(DiLA)手法を提案する。
2つの古典的推論問題に対するDiLAの性能評価を行い、既存のプロンプトベースおよびソルバ支援アプローチに対する一貫した性能を実証した。
論文 参考訳(メタデータ) (2024-02-19T07:38:57Z) - A Closer Look at the Self-Verification Abilities of Large Language Models in Logical Reasoning [73.77088902676306]
論理的推論の文脈において,大規模言語モデル(LLM)の自己検証能力について詳しく検討する。
本研究の主目的は,既存のLCMが誤った推論手順を正確に識別するのに苦労し,自己検証法の有効性を保証できないことにある。
論文 参考訳(メタデータ) (2023-11-14T07:13:10Z) - Are LLMs Rigorous Logical Reasoner? Empowering Natural Language Proof Generation with Contrastive Stepwise Decoding [10.421832675327712]
本稿では,論理的推論のためのモデルの能力を高めるために,負の推論経路を用いることにより,ステップワイズな証明生成に対照的な復号を導入する。
EntailmentBankの実験は、言語モデルの計画能力を実証する上で、我々の手法の成功を裏付けている。
論文 参考訳(メタデータ) (2023-11-12T05:12:49Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
大規模言語モデル(LLM)は、形式的知識表現(KR)システムの様々な制限を克服する能力を示した。
LLMは誘導的推論において最も優れているが、誘導的推論では最も効果が低い。
モデルの性能を評価するため,シングルタスクトレーニング,マルチタスクトレーニング,および「チェーンオブ思考」知識蒸留細調整技術について検討した。
論文 参考訳(メタデータ) (2023-10-02T01:00:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。