論文の概要: Do LLMs Dream of Discrete Algorithms?
- arxiv url: http://arxiv.org/abs/2506.23408v1
- Date: Sun, 29 Jun 2025 22:03:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-01 21:27:53.862155
- Title: Do LLMs Dream of Discrete Algorithms?
- Title(参考訳): LLMは離散アルゴリズムの夢か?
- Authors: Claudionor Coelho Jr, Yanen Li, Philip Tee,
- Abstract要約: 大規模言語モデル(LLM)は、人工知能の風景を急速に変化させてきた。
確率的推論への依存は、厳密な論理的推論を必要とする領域における有効性を制限する。
本稿では,論理ベースの推論モジュールでLLMを増強するニューロシンボリックアプローチを提案する。
- 参考スコア(独自算出の注目度): 0.7646713951724011
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have rapidly transformed the landscape of artificial intelligence, enabling natural language interfaces and dynamic orchestration of software components. However, their reliance on probabilistic inference limits their effectiveness in domains requiring strict logical reasoning, discrete decision-making, and robust interpretability. This paper investigates these limitations and proposes a neurosymbolic approach that augments LLMs with logic-based reasoning modules, particularly leveraging Prolog predicates and composable toolsets. By integrating first-order logic and explicit rule systems, our framework enables LLMs to decompose complex queries into verifiable sub-tasks, orchestrate reliable solutions, and mitigate common failure modes such as hallucination and incorrect step decomposition. We demonstrate the practical benefits of this hybrid architecture through experiments on the DABStep benchmark, showing improved precision, coverage, and system documentation in multi-step reasoning tasks. Our results indicate that combining LLMs with modular logic reasoning restores engineering rigor, enhances system reliability, and offers a scalable path toward trustworthy, interpretable AI agents across complex domains.
- Abstract(参考訳): 大規模言語モデル(LLM)は、人工知能のランドスケープを急速に変化させ、自然言語インタフェースとソフトウェアコンポーネントの動的オーケストレーションを可能にした。
しかし、確率的推論への依存は、厳密な論理的推論、離散的な意思決定、堅牢な解釈可能性を必要とする領域における有効性を制限する。
本稿では,これらの制約について検討し,特にPrologの述語や構成可能なツールセットを活用し,論理ベースの推論モジュールでLLMを増強するニューロシンボリックアプローチを提案する。
我々のフレームワークは、一階述語論理と明示的なルールシステムを統合することにより、LCMが複雑なクエリを検証可能なサブタスクに分解し、信頼性の高いソリューションをオーケストレーションし、幻覚や誤ったステップ分解のような一般的な障害モードを緩和することを可能にする。
我々は,DABStepベンチマークを用いて,マルチステップ推論タスクにおける精度,カバレッジ,システムドキュメンテーションの改善を示すことによって,このハイブリッドアーキテクチャの実用的メリットを実証する。
我々の結果は、LLMとモジュラー論理推論を組み合わせることで、エンジニアリングの厳密さを回復し、システムの信頼性を高め、複雑なドメインにまたがる信頼性の高い解釈可能なAIエージェントへのスケーラブルなパスを提供することを示している。
関連論文リスト
- Computational Thinking Reasoning in Large Language Models [69.28428524878885]
計算思考モデル(CTM)は、計算思考パラダイムを大規模言語モデル(LLM)に組み込んだ新しいフレームワークである。
ライブコード実行は推論プロセスにシームレスに統合され、CTMが計算によって考えることができる。
CTMは、精度、解釈可能性、一般化可能性の観点から、従来の推論モデルとツール拡張ベースラインを上回っている。
論文 参考訳(メタデータ) (2025-06-03T09:11:15Z) - Reasoning-as-Logic-Units: Scaling Test-Time Reasoning in Large Language Models Through Logic Unit Alignment [21.12989936864145]
CoT(Chain-of-Thought)のプロンプトによって,大規模言語モデル(LLM)の推論能力の向上が期待できる。
本稿では、生成したプログラムと対応するNL記述との間に論理単位を整列させることにより、より信頼性の高い推論経路を構築するReasoning-as-Logic-Units (RaLU)を提案する。
論文 参考訳(メタデータ) (2025-02-05T08:23:18Z) - ZebraLogic: On the Scaling Limits of LLMs for Logical Reasoning [92.76959707441954]
我々はLLM推論性能を評価するための総合的な評価フレームワークであるZebraLogicを紹介した。
ZebraLogicは、制御可能で定量化可能な複雑さを持つパズルの生成を可能にする。
その結果,複雑性が増大するにつれて,精度が著しく低下することが明らかとなった。
論文 参考訳(メタデータ) (2025-02-03T06:44:49Z) - Reversal of Thought: Enhancing Large Language Models with Preference-Guided Reverse Reasoning Warm-up [9.42385235462794]
大規模言語モデル(LLM)は、推論タスクにおいて顕著な性能を示すが、数学的および複雑な論理的推論において制限に直面している。
バッチ推論前のウォームアップフェーズにおいて,LLMの論理的推論能力を高めるために,Reversal of Thought (RoT)を提案する。
RoT は Preference-Guided Reverse Reasoning warm-up 戦略を利用している。
論文 参考訳(メタデータ) (2024-10-16T07:44:28Z) - Proof of Thought : Neurosymbolic Program Synthesis allows Robust and Interpretable Reasoning [1.3003982724617653]
大規模言語モデル(LLM)は自然言語処理に革命をもたらしたが、一貫性のない推論に苦戦している。
本研究では,LLM出力の信頼性と透明性を高めるフレームワークであるProof of Thoughtを紹介する。
主な貢献は、論理的整合性を高めるためのソート管理を備えた堅牢な型システム、事実的知識と推論的知識を明確に区別するための規則の明示である。
論文 参考訳(メタデータ) (2024-09-25T18:35:45Z) - When Do Program-of-Thoughts Work for Reasoning? [51.2699797837818]
本稿では,コードと推論能力の相関性を測定するために,複雑性に富んだ推論スコア(CIRS)を提案する。
具体的には、抽象構文木を用いて構造情報をエンコードし、論理的複雑性を計算する。
コードはhttps://github.com/zjunlp/EasyInstructのEasyInstructフレームワークに統合される。
論文 参考訳(メタデータ) (2023-08-29T17:22:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。