論文の概要: Satisfactory Medical Consultation based on Terminology-Enhanced Information Retrieval and Emotional In-Context Learning
- arxiv url: http://arxiv.org/abs/2503.17876v1
- Date: Sat, 22 Mar 2025 23:01:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:37:21.198098
- Title: Satisfactory Medical Consultation based on Terminology-Enhanced Information Retrieval and Emotional In-Context Learning
- Title(参考訳): ターミノロジーによる情報検索と情緒的インコンテキスト学習に基づく満足な医療相談
- Authors: Kaiwen Zuo, Jing Tang, Hanbing Qin, Binli Luo, Ligang He, Shiyan Tang,
- Abstract要約: 本稿では,TEIR と EICL の2つの主要なモジュールからなる,医療相談のための新しい枠組みを提案する。
TEIRは、公開データベースにおける制限されたドメイン知識の制限を克服し、帰納的知識とキー検索用語の利用による暗黙の推論を保証する。
EICLモジュールは、意味と属性情報をラベルのないコーパスから記憶することで、属性関連性の高い文を生成するのに役立つ。
- 参考スコア(独自算出の注目度): 5.658305428268366
- License:
- Abstract: Recent advancements in Large Language Models (LLMs) have marked significant progress in understanding and responding to medical inquiries. However, their performance still falls short of the standards set by professional consultations. This paper introduces a novel framework for medical consultation, comprising two main modules: Terminology-Enhanced Information Retrieval (TEIR) and Emotional In-Context Learning (EICL). TEIR ensures implicit reasoning through the utilization of inductive knowledge and key terminology retrieval, overcoming the limitations of restricted domain knowledge in public databases. Additionally, this module features capabilities for processing long context. The EICL module aids in generating sentences with high attribute relevance by memorizing semantic and attribute information from unlabelled corpora and applying controlled retrieval for the required information. Furthermore, a dataset comprising 803,564 consultation records was compiled in China, significantly enhancing the model's capability for complex dialogues and proactive inquiry initiation. Comprehensive experiments demonstrate the proposed method's effectiveness in extending the context window length of existing LLMs. The experimental outcomes and extensive data validate the framework's superiority over five baseline models in terms of BLEU and ROUGE performance metrics, with substantial leads in certain capabilities. Notably, ablation studies confirm the significance of the TEIR and EICL components. In addition, our new framework has the potential to significantly improve patient satisfaction in real clinical consulting situations.
- Abstract(参考訳): 近年のLarge Language Models (LLMs) の進歩は、医学的問い合わせに対する理解と対応において顕著な進歩を遂げている。
しかし、彼らのパフォーマンスは、専門家の協議によって設定された基準に届かなかった。
本稿では,Terminology-Enhanced Information Retrieval (TEIR) と Emotional In-Context Learning (EICL) の2つの主要モジュールからなる,医療相談のための新しい枠組みを提案する。
TEIRは、帰納的知識と重要な用語検索を利用して暗黙的な推論を保証し、パブリックデータベースにおける制限されたドメイン知識の制限を克服する。
さらに、このモジュールは長いコンテキストを処理する機能を備えている。
EICLモジュールは、不要なコーパスから意味と属性情報を記憶し、必要な情報に対して制御された検索を適用することにより、属性関連性の高い文を生成するのに役立つ。
さらに、中国では803,564件の相談記録からなるデータセットが作成され、複雑な対話や前向きな調査開始のためのモデルの能力が著しく向上した。
既存LLMのコンテキストウィンドウ長の拡張における提案手法の有効性を総合実験により実証した。
実験結果と広範なデータは、BLEUとROUGEのパフォーマンス指標の観点から、フレームワークが5つのベースラインモデルよりも優れていることを検証します。
特に、アブレーション研究はTEIRとEICLの構成要素の重要性を裏付けるものである。
また,本フレームワークは,実際の臨床相談状況において,患者の満足度を大幅に向上させる可能性がある。
関連論文リスト
- Conversation AI Dialog for Medicare powered by Finetuning and Retrieval Augmented Generation [0.0]
大きな言語モデル(LLM)は、対話生成を含む自然言語処理タスクにおいて印象的な機能を示している。
本研究の目的は、LoRAによる微調整とRetrieval-Augmented Generationフレームワークという、2つの重要な技術の比較分析を行うことである。
論文 参考訳(メタデータ) (2025-02-04T11:50:40Z) - LlaMADRS: Prompting Large Language Models for Interview-Based Depression Assessment [75.44934940580112]
LlaMADRSは、オープンソースのLarge Language Models(LLM)を利用して、うつ病の重症度評価を自動化する新しいフレームワークである。
本研究は,クリニカルインタヴューの解釈・スコアリングにおけるモデル指導のために,慎重に設計された手がかりを用いたゼロショットプロンプト戦略を用いている。
実世界における236件のインタビューを対象とし,臨床評価と強い相関性を示した。
論文 参考訳(メタデータ) (2025-01-07T08:49:04Z) - Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering [70.44269982045415]
Retrieval-augmented Generation (RAG) は,大規模言語モデル (LLM) の性能向上のための有望なアプローチとして登場した。
医療用QAデータセットに様々な補助的要素を提供するMedRGB(MedRGB)を導入する。
実験結果から,検索した文書のノイズや誤情報の処理能力に限界があることが判明した。
論文 参考訳(メタデータ) (2024-11-14T06:19:18Z) - Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KAREは、知識グラフ(KG)コミュニティレベルの検索と大規模言語モデル(LLM)推論を統合する新しいフレームワークである。
MIMIC-IIIでは最大10.8~15.0%、MIMIC-IVでは12.6~12.7%である。
論文 参考訳(メタデータ) (2024-10-06T18:46:28Z) - Exploring LLM-based Data Annotation Strategies for Medical Dialogue Preference Alignment [22.983780823136925]
本研究は、医療対話モデルを改善するために、AIフィードバック(RLAIF)技術を用いた強化学習(Reinforcement Learning)について検討する。
医療におけるRLAIF研究の主な課題は、自動評価手法の限界である。
標準化された患者診査に基づく新しい評価枠組みを提案する。
論文 参考訳(メタデータ) (2024-10-05T10:29:19Z) - A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models [71.25225058845324]
大規模言語モデル(LLM)は、言語理解と生成において革命的な能力を示している。
Retrieval-Augmented Generation (RAG)は、信頼性と最新の外部知識を提供する。
RA-LLMは、モデルの内部知識に頼るのではなく、外部および権威的な知識ベースを活用するために登場した。
論文 参考訳(メタデータ) (2024-05-10T02:48:45Z) - A Comprehensive Survey on Evaluating Large Language Model Applications in the Medical Industry [2.1717945745027425]
大規模言語モデル(LLM)は、言語理解と生成の高度な能力で様々な産業に影響を与えている。
この包括的調査は、医療におけるLSMの広範な適用と必要な評価を概説する。
本調査は,臨床環境,医療用テキストデータ処理,研究,教育,公衆衛生への意識といった分野におけるLCM応用の詳細な分析を行うために構成されている。
論文 参考訳(メタデータ) (2024-04-24T09:55:24Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
我々は,emphDoctorをプレイヤとして,NPC間の動的医療相互作用をシミュレーションするフレームワークであるtextbfAI Hospitalを紹介した。
この設定は臨床シナリオにおけるLCMの現実的な評価を可能にする。
高品質な中国の医療記録とNPCを利用したマルチビュー医療評価ベンチマークを開発した。
論文 参考訳(メタデータ) (2024-02-15T06:46:48Z) - REALM: RAG-Driven Enhancement of Multimodal Electronic Health Records
Analysis via Large Language Models [19.62552013839689]
既存のモデルは、しばしば臨床上の課題に医学的文脈を欠いているため、外部知識の組み入れが促される。
本稿では、マルチモーダルEHR表現を強化するためのRAG(Retrieval-Augmented Generation)駆動フレームワークREALMを提案する。
MIMIC-III 死亡率と可読化タスクに関する実験は,ベースラインよりもREALM フレームワークの優れた性能を示す。
論文 参考訳(メタデータ) (2024-02-10T18:27:28Z) - CLIPSyntel: CLIP and LLM Synergy for Multimodal Question Summarization
in Healthcare [16.033112094191395]
MMQS(Multimodal Medical Question Summarization)データセットを紹介する。
このデータセットは、医用クエリと視覚補助とを組み合わせ、患者のニーズに対するより豊かでニュアンスな理解を促進する。
また、医学的障害を識別し、関連するコンテキストを生成し、医療概念をフィルタリングし、視覚的に認識された要約を作成する4つのモジュールからなるフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-16T03:02:05Z) - VBridge: Connecting the Dots Between Features, Explanations, and Data
for Healthcare Models [85.4333256782337]
VBridgeは、臨床医の意思決定ワークフローに機械学習の説明をシームレスに組み込むビジュアル分析ツールである。
我々は,臨床医がMLの特徴に慣れていないこと,文脈情報の欠如,コホートレベルの証拠の必要性など,3つの重要な課題を特定した。
症例スタディと専門医4名のインタビューを通じて, VBridgeの有効性を実証した。
論文 参考訳(メタデータ) (2021-08-04T17:34:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。