Identifying Ising and percolation phase transitions based on KAN method
- URL: http://arxiv.org/abs/2503.17996v1
- Date: Wed, 05 Mar 2025 13:49:22 GMT
- Title: Identifying Ising and percolation phase transitions based on KAN method
- Authors: Dian Xu, Shanshan Wang, Wei Li, Weibing Deng, Feng Gao, Jianmin Shen,
- Abstract summary: This paper proposes the use of the Kolmogorov-Arnold Network to input raw configurations into a learning model.<n>The results demonstrate that the KAN can indeed predict the critical points of percolation models.
- Score: 6.086561505970236
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern machine learning, grounded in the Universal Approximation Theorem, has achieved significant success in the study of phase transitions in both equilibrium and non-equilibrium systems. However, identifying the critical points of percolation models using raw configurations remains a challenging and intriguing problem. This paper proposes the use of the Kolmogorov-Arnold Network, which is based on the Kolmogorov-Arnold Representation Theorem, to input raw configurations into a learning model. The results demonstrate that the KAN can indeed predict the critical points of percolation models. Further observation reveals that, apart from models associated with the density of occupied points, KAN is also capable of effectively achieving phase classification for models where the sole alteration pertains to the orientation of spins, resulting in an order parameter that manifests as an external magnetic flux, such as the Ising model.
Related papers
- A Causal Adjustment Module for Debiasing Scene Graph Generation [28.44150555570101]
We employ causal inference techniques to model the causality among skewed distributions.
Our method enables the composition of zero-shot relationships, thereby enhancing the model's ability to recognize such relationships.
arXiv Detail & Related papers (2025-03-22T20:44:01Z) - Model-free Methods for Event History Analysis and Efficient Adjustment (PhD Thesis) [55.2480439325792]
This thesis is a series of independent contributions to statistics unified by a model-free perspective.<n>The first chapter elaborates on how a model-free perspective can be used to formulate flexible methods that leverage prediction techniques from machine learning.<n>The second chapter studies the concept of local independence, which describes whether the evolution of one process is directly influenced by another.
arXiv Detail & Related papers (2025-02-11T19:24:09Z) - Linear Noise Approximation Assisted Bayesian Inference on Mechanistic Model of Partially Observed Stochastic Reaction Network [2.325005809983534]
This paper develops an efficient Bayesian inference approach for partially observed enzymatic reaction network (SRN)
An interpretable linear noise approximation (LNA) metamodel is proposed to approximate the likelihood of observations.
An efficient posterior sampling approach is developed by utilizing the gradients of the derived likelihood to speed up the convergence of Markov Chain Monte Carlo.
arXiv Detail & Related papers (2024-05-05T01:54:21Z) - On the Impact of Sampling on Deep Sequential State Estimation [17.92198582435315]
State inference and parameter learning in sequential models can be successfully performed with approximation techniques.
Tighter Monte Carlo objectives have been proposed in the literature to enhance generative modeling performance.
arXiv Detail & Related papers (2023-11-28T17:59:49Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
We show how a PAC-Bayes bound is obtained for a general class of models, characterizing factors which influence performance in the interpolating regime.
We quantify how the test error for overparameterized models achieving effectively zero training error depends on the quality of the implicit regularization imposed by e.g. the combination of model, parameter-initialization scheme.
arXiv Detail & Related papers (2023-11-13T01:48:08Z) - Counting Phases and Faces Using Bayesian Thermodynamic Integration [77.34726150561087]
We introduce a new approach to reconstruction of the thermodynamic functions and phase boundaries in two-parametric statistical mechanics systems.
We use the proposed approach to accurately reconstruct the partition functions and phase diagrams of the Ising model and the exactly solvable non-equilibrium TASEP.
arXiv Detail & Related papers (2022-05-18T17:11:23Z) - Flow-based sampling in the lattice Schwinger model at criticality [54.48885403692739]
Flow-based algorithms may provide efficient sampling of field distributions for lattice field theory applications.
We provide a numerical demonstration of robust flow-based sampling in the Schwinger model at the critical value of the fermion mass.
arXiv Detail & Related papers (2022-02-23T19:00:00Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Emergence of a finite-size-scaling function in the supervised learning
of the Ising phase transition [0.7658140759553149]
We investigate the connection between the supervised learning of the binary phase classification in the ferromagnetic Ising model and the standard finite-size-scaling theory of the second-order phase transition.
We show that just one free parameter is capable enough to describe the data-driven emergence of the universal finite-size-scaling function in the network output.
arXiv Detail & Related papers (2020-10-01T12:34:12Z) - Towards quantum simulation of Sachdev-Ye-Kitaev model [5.931069258860319]
We study a simplified version of the Sachdev-Ye-Kitaev (SYK) model with real interactions by exact diagonalization.
A quantum phase transition from a chaotic state to an integrable state is observed by increasing the discrete separation.
arXiv Detail & Related papers (2020-03-03T14:18:07Z) - Semiparametric Bayesian Forecasting of Spatial Earthquake Occurrences [77.68028443709338]
We propose a fully Bayesian formulation of the Epidemic Type Aftershock Sequence (ETAS) model.
The occurrence of the mainshock earthquakes in a geographical region is assumed to follow an inhomogeneous spatial point process.
arXiv Detail & Related papers (2020-02-05T10:11:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.