Vision-R1: Evolving Human-Free Alignment in Large Vision-Language Models via Vision-Guided Reinforcement Learning
- URL: http://arxiv.org/abs/2503.18013v1
- Date: Sun, 23 Mar 2025 10:21:14 GMT
- Title: Vision-R1: Evolving Human-Free Alignment in Large Vision-Language Models via Vision-Guided Reinforcement Learning
- Authors: Yufei Zhan, Yousong Zhu, Shurong Zheng, Hongyin Zhao, Fan Yang, Ming Tang, Jinqiao Wang,
- Abstract summary: Large Vision-Language Models (LVLMs) typically follow a two-stage training paradigm-pretraining and supervised fine-tuning.<n> preference optimization, derived from the language domain, has emerged as an effective post-training reinforcement strategy.<n>We propose Vision-R1, a novel vision-guided R1-like reinforcement learning algorithm for LVLMs that rewards models with definitive vision feedback.
- Score: 26.14137626882127
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large Vision-Language Models (LVLMs) typically follow a two-stage training paradigm-pretraining and supervised fine-tuning. Recently, preference optimization, derived from the language domain, has emerged as an effective post-training reinforcement strategy to enhance capabilities of LVLMs. However, constructing high-quality human-annotated preference data and developing robust reward models to mimic these preferences are both costly and challenging. Motivated by this observation, we propose Vision-R1, a novel vision-guided R1-like reinforcement learning algorithm for LVLMs that rewards models with definitive vision feedback. It only leverages curated instruction data, eliminating the need for specialized reward models and handcrafted preference datasets. We incorporate a criterion-driven reward function that further integrates multi-dimensional feedback to evaluate model completions comprehensively based on the vision task logic. Furthermore, we introduce a progressive rule refinement strategy that dynamically adjusts the reward criteria during training, enabling continuous model improvement and mitigating reward hacking. Extensive experiments on both in-distribution and out-of-distribution benchmarks demonstrate that fine-tuning the 7B LVLMs with Vision-R1 achieves consistent performance gains, with even up to 50% improvement and surpassing the state-of-the-art 10x size model.
Related papers
- MoCa: Modality-aware Continual Pre-training Makes Better Bidirectional Multimodal Embeddings [75.0617088717528]
MoCa is a framework for transforming pre-trained VLM backbones into effective bidirectional embedding models.<n>MoCa consistently improves performance across MMEB and ViDoRe-v2 benchmarks, achieving new state-of-the-art results.
arXiv Detail & Related papers (2025-06-29T06:41:00Z) - VLN-R1: Vision-Language Navigation via Reinforcement Fine-Tuning [77.34267241692706]
Vision-Language Navigation (VLN) is a core challenge in embodied AI, requiring agents to navigate real-world environments using natural language instructions.<n>We propose VLN-R1, an end-to-end framework that leverages Large Vision-Language Models (LVLM) to directly translate egocentric video streams into continuous navigation actions.
arXiv Detail & Related papers (2025-06-20T17:59:59Z) - GRAM: A Generative Foundation Reward Model for Reward Generalization [48.63394690265176]
We develop a generative reward model that is first trained via large-scale unsupervised learning and then fine-tuned via supervised learning.<n>This model generalizes well across several tasks, including response ranking, reinforcement learning from human feedback, and task adaptation with fine-tuning.
arXiv Detail & Related papers (2025-06-17T04:34:27Z) - VL-GenRM: Enhancing Vision-Language Verification via Vision Experts and Iterative Training [23.391643634478587]
Vision-Language Reward Model (VL-RM) is key to aligning VL models by providing structured feedback.<n> bootstrapping dilemma arises as high-quality training data depends on already strong VL models.<n>We propose an iterative training framework leveraging vision experts, Chain-of-Thought rationales, and Margin-based Rejection Sampling.
arXiv Detail & Related papers (2025-06-16T18:10:51Z) - Reinforcement Learning Tuning for VideoLLMs: Reward Design and Data Efficiency [56.475612147721264]
We propose a dual-reward formulation that supervises both semantic and temporal reasoning through discrete and continuous reward signals.<n>We evaluate our approach across eight representative video understanding tasks, including VideoQA, Temporal Video Grounding, and Grounded VideoQA.<n>Results underscore the importance of reward design and data selection in advancing reasoning-centric video understanding with MLLMs.
arXiv Detail & Related papers (2025-06-02T17:28:26Z) - DINO-R1: Incentivizing Reasoning Capability in Vision Foundation Models [18.06361678575107]
We propose textbfDINO-R1, the first attempt to incentivize visual in-context reasoning capabilities of vision foundation models.<n>DINO-R1 introduces textbfGroup Relative Query Optimization (GRQO), a novel reinforcement-style training strategy.<n>Experiments on COCO, LVIS, and ODinW demonstrate that DINO-R1 significantly outperforms supervised fine-tuning baselines.
arXiv Detail & Related papers (2025-05-29T21:58:06Z) - VLM-R1: A Stable and Generalizable R1-style Large Vision-Language Model [29.524164786422368]
Recently, DeepSeek R1 has shown that reinforcement learning can substantially improve the reasoning capabilities of Large Language Models (LLMs)
We investigate the extension of R1-style reinforcement learning to Vision-Language Models (VLMs)
We develop VLM-R1, a dedicated framework designed to harness RL for improving VLMs' performance on general vision-language tasks.
arXiv Detail & Related papers (2025-04-10T10:05:15Z) - OpenVLThinker: An Early Exploration to Complex Vision-Language Reasoning via Iterative Self-Improvement [91.88062410741833]
This study investigates whether similar reasoning capabilities can be successfully integrated into large vision-language models (LVLMs)<n>We consider an approach that iteratively leverages supervised fine-tuning (SFT) on lightweight training data and Reinforcement Learning (RL) to further improve model generalization.<n>OpenVLThinker, a LVLM exhibiting consistently improved reasoning performance on challenging benchmarks such as MathVista, MathVerse, and MathVision, demonstrates the potential of our strategy for robust vision-language reasoning.
arXiv Detail & Related papers (2025-03-21T17:52:43Z) - Boosting the Generalization and Reasoning of Vision Language Models with Curriculum Reinforcement Learning [12.728451197053321]
We propose Curriculum Reinforcement Finetuning (Curr-ReFT), a novel post-training paradigm specifically designed for small-scale vision-language models (VLMs)<n>Curr-ReFT comprises two sequential stages: Curriculum Reinforcement Learning and Rejected Sampling-based Self-improvement.<n>Our experiments demonstrate that models trained with Curr-ReFT paradigm achieve state-of-the-art performance across various visual tasks.
arXiv Detail & Related papers (2025-03-10T08:48:50Z) - VLFeedback: A Large-Scale AI Feedback Dataset for Large Vision-Language Models Alignment [55.7956150385255]
We investigate the efficacy of AI feedback to scale supervision for aligning vision-language models.
We introduce VLFeedback, the first large-scale vision-language feedback dataset.
We train Silkie, an LVLM fine-tuned via direct preference optimization on VLFeedback.
arXiv Detail & Related papers (2024-10-12T07:56:47Z) - Deciphering Cross-Modal Alignment in Large Vision-Language Models with Modality Integration Rate [118.37653302885607]
We present the Modality Integration Rate (MIR), an effective, robust, and generalized metric to indicate the multi-modal pre-training quality of Large Vision Language Models (LVLMs)
MIR is indicative about training data selection, training strategy schedule, and model architecture design to get better pre-training results.
arXiv Detail & Related papers (2024-10-09T17:59:04Z) - Calibrated Self-Rewarding Vision Language Models [27.686545023186852]
Large Vision-Language Models (LVLMs) have made substantial progress by integrating pre-trained large language models (LLMs) and vision models through instruction tuning.
LVLMs often exhibit the hallucination phenomenon, where generated text responses appear linguistically plausible but contradict the input image.
We propose the Calibrated Self-Rewarding (CSR) approach, which enables the model to self-improve by iteratively generating candidate responses, evaluating the reward for each response, and curating preference data for fine-tuning.
arXiv Detail & Related papers (2024-05-23T14:30:33Z) - Data-efficient Large Vision Models through Sequential Autoregression [58.26179273091461]
We develop an efficient, autoregression-based vision model on a limited dataset.
We demonstrate how this model achieves proficiency in a spectrum of visual tasks spanning both high-level and low-level semantic understanding.
Our empirical evaluations underscore the model's agility in adapting to various tasks, heralding a significant reduction in the parameter footprint.
arXiv Detail & Related papers (2024-02-07T13:41:53Z) - VeCAF: Vision-language Collaborative Active Finetuning with Training Objective Awareness [56.87603097348203]
VeCAF uses labels and natural language annotations to perform parametric data selection for PVM finetuning.
VeCAF incorporates the finetuning objective to select significant data points that effectively guide the PVM towards faster convergence.
On ImageNet, VeCAF uses up to 3.3x less training batches to reach the target performance compared to full finetuning.
arXiv Detail & Related papers (2024-01-15T17:28:37Z) - Measuring and Improving Chain-of-Thought Reasoning in Vision-Language Models [61.28463542324576]
Vision-language models (VLMs) have recently demonstrated strong efficacy as visual assistants that can generate human-like outputs.
We evaluate existing state-of-the-art VLMs and find that even the best-performing model is unable to demonstrate strong visual reasoning capabilities and consistency.
We propose a two-stage training framework aimed at improving both the reasoning performance and consistency of VLMs.
arXiv Detail & Related papers (2023-09-08T17:49:44Z) - Reinforcement Learning with Action-Free Pre-Training from Videos [95.25074614579646]
We introduce a framework that learns representations useful for understanding the dynamics via generative pre-training on videos.
Our framework significantly improves both final performances and sample-efficiency of vision-based reinforcement learning.
arXiv Detail & Related papers (2022-03-25T19:44:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.