論文の概要: EVOLVE: a Value-Added Services Platform for Electric Vehicle Charging Stations
- arxiv url: http://arxiv.org/abs/2503.18687v1
- Date: Mon, 24 Mar 2025 13:57:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:33:03.873527
- Title: EVOLVE: a Value-Added Services Platform for Electric Vehicle Charging Stations
- Title(参考訳): EVOLVE:電気自動車充電ステーションの付加価値サービスプラットフォーム
- Authors: Erick Silva, Tadeu Freitas, Rehana Yasmin, Ali Shoker, Paulo Esteves-Verissimo,
- Abstract要約: 電気自動車(EV)の充電で注目すべき課題は、バッテリーを完全に充電するのに要する時間だ。
このアイドル期間は、車載ソフトウェアアップデートのような、時間を要する、あるいはデータ集約的なサービスを提供する機会を提供する。
acronymは、セキュアなオンチャージャーユニバーサルアプリケーションをサポートする最初のEVチャージャーコンピューティングアーキテクチャである。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: A notable challenge in Electric Vehicle (EV) charging is the time required to fully charge the battery, which can range from 15 minutes to 2-3 hours. This idle period, however, presents an opportunity to offer time-consuming or data-intensive services such as vehicular software updates. ISO 15118 referred to the concept of Value-Added Services (VAS) in the charging scenario, but it remained underexplored in the literature. Our paper addresses this gap by proposing \acronym, the first EV charger compute architecture that supports secure on-charger universal applications with upstream and downstream communication. The architecture covers the end-to-end hardware/software stack, including standard API for vehicles and IT infrastructure. We demonstrate the feasibility and advantages of \acronym by employing and evaluating three suggested value-added services: vehicular software updates, security information and event management (SIEM), and secure payments. The results demonstrate significant reductions in bandwidth utilization and latency, as well as high throughput, which supports this novel concept and suggests a promising business model for Electric Vehicle charging station operation.
- Abstract(参考訳): 電気自動車(EV)の充電で注目すべき課題は、バッテリーを完全に充電するのに要する時間だ。
しかし、このアイドル期間は、車載ソフトウェアのアップデートなど、時間を要する、あるいはデータ集約的なサービスを提供する機会を提供する。
ISO 15118は、充電のシナリオにおいてVAS(Value-Added Services)の概念を言及したが、文献では未調査のままであった。
本稿は,上流および下流通信によるセキュアなオンチャージャーユニバーサルアプリケーションをサポートする,最初のEV充電器計算アーキテクチャである‘acronym’を提案することで,このギャップに対処する。
アーキテクチャは、車両とITインフラストラクチャの標準APIを含む、エンドツーエンドのハードウェア/ソフトウェアスタックをカバーする。
ソフトウェアアップデート,セキュリティ情報およびイベント管理(SIEM),セキュア支払いの3つの提案された付加価値サービスを活用し,評価することにより,‘acronym’の実現可能性とメリットを実証する。
その結果,この概念を裏付ける高スループット化に加えて,バンド幅利用と遅延の大幅な削減が示され,電気自動車充電ステーション運用における有望なビジネスモデルが示唆された。
関連論文リスト
- QoS prediction in radio vehicular environments via prior user
information [54.853542701389074]
セルラーテストネットワークから収集したデータを用いて,時間帯を予測するためのMLツリーアンサンブル手法の評価を行った。
具体的には、先行車両の情報を含め、無線環境から得られる測定値の相関を利用して、目標車両の予測を強化する。
論文 参考訳(メタデータ) (2024-02-27T17:05:41Z) - DynamiQS: Quantum Secure Authentication for Dynamic Charging of Electric Vehicles [61.394095512765304]
Dynamic Wireless Power Transfer (DWPT)は、電気自動車を運転中に充電できる新しい技術である。
量子コンピューティングの最近の進歩は、古典的な公開鍵暗号を危険にさらしている。
動的ワイヤレス充電のための第1量子後セキュア認証プロトコルであるDynamiQSを提案する。
論文 参考訳(メタデータ) (2023-12-20T09:40:45Z) - Maximum flow-based formulation for the optimal location of electric
vehicle charging stations [2.340830801548167]
本稿では,EV充電需要を最大フロー問題として駅に割り当てるモデルを提案する。
実世界のシナリオを扱うための我々のアプローチのスケーラビリティを実証し、モントリオール市の方法論を紹介します。
論文 参考訳(メタデータ) (2023-12-10T19:49:09Z) - A Data-Driven Framework for Improving Public EV Charging Infrastructure:
Modeling and Forecasting [13.950084838642228]
既存の充電インフラは、急速に増加する充電需要を維持できなくなるのではないかと考えられている。
現在、適切なQoE指標がなければ、EV充電ステーションの性能を評価するのに、オペレーターは著しく困難に直面している。
本稿では,新規かつオリジナルなQoEパフォーマンス指標の定式化を通じて,このギャップを埋めることを目的とする。
論文 参考訳(メタデータ) (2023-12-08T19:37:15Z) - Charge Manipulation Attacks Against Smart Electric Vehicle Charging Stations and Deep Learning-based Detection Mechanisms [49.37592437398933]
電気自動車充電ステーション(EVCS)は、グリーントランスポートの実現に向けた重要なステップとなる。
我々は、攻撃者がスマート充電操作中に交換された情報を操作しているEV充電に対する充電操作攻撃(CMA)を調査した。
本稿では,EV充電に関わるパラメータを監視してCMAを検出する,教師なしのディープラーニングに基づくメカニズムを提案する。
論文 参考訳(メタデータ) (2023-10-18T18:38:59Z) - MSight: An Edge-Cloud Infrastructure-based Perception System for
Connected Automated Vehicles [58.461077944514564]
本稿では,自動走行車に特化して設計された最先端道路側認識システムであるMSightについて述べる。
MSightは、リアルタイムの車両検出、ローカライゼーション、トラッキング、短期的な軌道予測を提供する。
評価は、待ち時間を最小限にしてレーンレベルの精度を維持するシステムの能力を強調している。
論文 参考訳(メタデータ) (2023-10-08T21:32:30Z) - HoneyEVSE: An Honeypot to emulate Electric Vehicle Supply Equipments [14.413675592484926]
HoneyEVSEは、電気自動車の充電ステーションをシミュレートする最初のハニーポットである。
HoneyEVSEは、EV充電プロセスの忠実度の高さをシミュレートすると同時に、ユーザがダッシュボードを通じてそれを操作できるようにする。
結果から,HoneyEVSEは露呈したサービス上で多数のインタラクションを惹きつけながら,Shodan honeyscoreメトリックを回避できることが示唆された。
論文 参考訳(メタデータ) (2023-09-12T09:15:07Z) - Learning to Operate an Electric Vehicle Charging Station Considering
Vehicle-grid Integration [4.855689194518905]
本稿では、充電ステーションの利益を最大化するために、新しい集中的アロケーションと分散実行(CADE)強化学習(RL)フレームワークを提案する。
集中配置プロセスでは、EVを待機スポットまたは充電スポットに割り当て、分散実行プロセスでは、各充電器は、共有再生メモリからアクション値関数を学習しながら、独自の充電/放電判定を行う。
数値計算により,提案したCADEフレームワークは計算効率が高く,拡張性も高く,ベースラインモデル予測制御(MPC)よりも優れていた。
論文 参考訳(メタデータ) (2021-11-01T23:10:28Z) - Risk Adversarial Learning System for Connected and Autonomous Vehicle
Charging [43.42105971560163]
我々は、コネクテッドかつ自律的な自動車充電インフラ(CAV-CI)のための合理的意思決定支援システム(RDSS)の設計について検討する。
検討されたCAV-CIでは、配電系統オペレーター(DSO)が電気自動車供給装置(EVSE)を配備し、人間駆動のコネクテッドカー(CV)と自動運転車(AV)のためのEV充電設備を提供する。
人力EVによる充電要求は、実際の需要よりもエネルギーと充電時間を必要とすると不合理になる。
我々は,CAV-CIが解決する新たなリスク対向型マルチエージェント学習システム(ALS)を提案する。
論文 参考訳(メタデータ) (2021-08-02T02:38:15Z) - Short-term forecast of EV charging stations occupancy probability using
big data streaming analysis [0.0]
本稿では,充電インフラからのデータストリームを処理可能なアーキテクチャを提案する。
最終目標は、現在から数分後に充電ステーションの可利用性を予測することである。
ストリーミングモデルは、履歴データのみを使用してトレーニングされたモデルよりもパフォーマンスがよい。
論文 参考訳(メタデータ) (2021-04-26T12:03:02Z) - $\pi$-ROAD: a Learn-as-You-Go Framework for On-Demand Emergency Slices
in V2X Scenarios [68.33556559127011]
$pi$-roadは、道路沿いの通常のモバイルトラフィックパターンを自動的に学習し、定期的でないイベントを検出し、重大度で分類するフレームワークである。
この結果から,$pi$-ROADは未発生の道路イベントの検出と分類に成功し,すでに稼働しているサービスに対するENSの影響を最大30%削減できることがわかった。
論文 参考訳(メタデータ) (2020-12-11T09:35:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。