論文の概要: CARGO: A Co-Optimization Framework for EV Charging and Routing in Goods Delivery Logistics
- arxiv url: http://arxiv.org/abs/2508.01476v1
- Date: Sat, 02 Aug 2025 20:08:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 18:25:21.896204
- Title: CARGO: A Co-Optimization Framework for EV Charging and Routing in Goods Delivery Logistics
- Title(参考訳): CARGO:Goods Delivery LogisticsにおけるEV充電とルーティングの最適化フレームワーク
- Authors: Arindam Khanda, Anurag Satpathy, Amit Jha, Sajal K. Das,
- Abstract要約: EVベースの配送経路計画問題(EDRP)に対処する枠組みを提案する。
EDF と NDF の22% の充電コストが 39% と 22% に削減され,同等の配送が完了した。
- 参考スコア(独自算出の注目度): 5.696586139612419
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With growing interest in sustainable logistics, electric vehicle (EV)-based deliveries offer a promising alternative for urban distribution. However, EVs face challenges due to their limited battery capacity, requiring careful planning for recharging. This depends on factors such as the charging point (CP) availability, cost, proximity, and vehicles' state of charge (SoC). We propose CARGO, a framework addressing the EV-based delivery route planning problem (EDRP), which jointly optimizes route planning and charging for deliveries within time windows. After proving the problem's NP-hardness, we propose a mixed integer linear programming (MILP)-based exact solution and a computationally efficient heuristic method. Using real-world datasets, we evaluate our methods by comparing the heuristic to the MILP solution, and benchmarking it against baseline strategies, Earliest Deadline First (EDF) and Nearest Delivery First (NDF). The results show up to 39% and 22% reductions in the charging cost over EDF and NDF, respectively, while completing comparable deliveries.
- Abstract(参考訳): 持続可能なロジスティクスへの関心が高まり、電気自動車(EV)ベースの配送は、都市部での流通に有望な代替手段を提供する。
しかし、EVはバッテリー容量が限られており、充電のために慎重に計画する必要があるため、課題に直面している。
これは充電点(CP)の可利用性、コスト、近接性、車両の充電状態(SoC)などの要因に依存する。
本稿では,EVベースの配送経路計画問題(EDRP)に対処するフレームワークであるCARGOを提案する。
問題のNP硬度を証明した後、混合整数線形計画法(MILP)に基づく完全解法と計算効率の良いヒューリスティック法を提案する。
実世界のデータセットを用いて、ヒューリスティックをMILPソリューションと比較し、ベースライン戦略であるEarl Most Deadline First(EDF)とNearest Delivery First(NDF)とをベンチマークすることで、我々の手法を評価する。
その結果、EDFおよびNDFよりも充電コストが39%と22%削減され、同等の配送が完了した。
関連論文リスト
- Coalitional Bargaining via Reinforcement Learning: An Application to
Collaborative Vehicle Routing [49.00137468773683]
コラボレーティブ・ビークル・ルーティング(Collaborative Vehicle Routing)とは、デリバリ情報を共有し、互いに代理してデリバリ要求を実行することで、デリバリ企業が協力する場所である。
これによりスケールの経済が達成され、コスト、温室効果ガスの排出、道路渋滞が減少する。
しかし、どの会社が誰とパートナーし、それぞれの会社がどれだけの報酬を支払うべきか?
シャプリー値(英語版)やヌクレオルス(英語版)のような伝統的なゲーム理論解の概念は、協調車両ルーティング(英語版)の現実問題に対して計算することが困難である。
論文 参考訳(メタデータ) (2023-10-26T15:04:23Z) - Charge Manipulation Attacks Against Smart Electric Vehicle Charging Stations and Deep Learning-based Detection Mechanisms [49.37592437398933]
電気自動車充電ステーション(EVCS)は、グリーントランスポートの実現に向けた重要なステップとなる。
我々は、攻撃者がスマート充電操作中に交換された情報を操作しているEV充電に対する充電操作攻撃(CMA)を調査した。
本稿では,EV充電に関わるパラメータを監視してCMAを検出する,教師なしのディープラーニングに基づくメカニズムを提案する。
論文 参考訳(メタデータ) (2023-10-18T18:38:59Z) - Federated Reinforcement Learning for Electric Vehicles Charging Control
on Distribution Networks [42.04263644600909]
マルチエージェント深部強化学習(MADRL)はEV充電制御において有効であることが証明されている。
既存のMADRLベースのアプローチでは、配電ネットワークにおけるEV充電/放電の自然な電力フローを考慮できない。
本稿では,マルチEV充電/放電と最適電力流で動作する放射分布ネットワーク(RDN)を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2023-08-17T05:34:46Z) - Predict+Optimize Problem in Renewable Energy Scheduling [31.032838966665828]
本稿では IEEE-CIS Technical Challenge on Predict+ for Renewable Energy Scheduling のソリューションをベンチマークする。
光GBMアンサンブルを用いた最適化手法は、少なくとも2%のエネルギーコスト削減を実現した。
この研究の新規性は、現実の再生可能エネルギースケジューリング問題に適用される予測+方法論の包括的評価にある。
論文 参考訳(メタデータ) (2022-12-21T02:34:12Z) - Resource Constrained Vehicular Edge Federated Learning with Highly
Mobile Connected Vehicles [41.02566275644629]
本稿では,中央処理ユニット(CPU)およびローカルデータセット上で,エッジサーバが高度に移動可能なコネクテッドカー(CV)を利用してグローバルモデルをトレーニングする,VEFL(vehicular edge federated learning)ソリューションを提案する。
我々は, 遅延, エネルギー, コスト制約下での無線アクセス技術 (RAT) のパラメータ最適化問題を, 局所的に訓練されたモデルの受信を成功させる確率を最大化するために考案した。
論文 参考訳(メタデータ) (2022-10-27T14:33:06Z) - Federated Reinforcement Learning for Real-Time Electric Vehicle Charging
and Discharging Control [42.17503767317918]
本稿では、動的環境下で異なるEVユーザに対して最適なEV充電/放電制御戦略を開発する。
多様なユーザの行動や動的環境に適合する水平連合強化学習法(HFRL)を提案する。
シミュレーションの結果,提案したリアルタイムEV充電/放電制御戦略は,様々な要因において良好に機能することが示された。
論文 参考訳(メタデータ) (2022-10-04T08:22:46Z) - A Deep Reinforcement Learning-Based Charging Scheduling Approach with
Augmented Lagrangian for Electric Vehicle [2.686271754751717]
本稿では,EV充電スケジューリング問題を制約付きマルコフ決定過程(CMDP)として定式化する。
本稿では, CMDP を解くために, 安全な非政治強化学習(RL)手法を提案する。
実世界の電力価格を用いた総合的な数値実験により,提案アルゴリズムは高解最適性と制約コンプライアンスを実現することができることを示した。
論文 参考訳(メタデータ) (2022-09-20T14:56:51Z) - Data-Driven Chance Constrained AC-OPF using Hybrid Sparse Gaussian
Processes [57.70237375696411]
入力不確実性を伴う潮流方程式をモデル化するために,スパースプロセスとハイブリッドガウスプロセス(GP)フレームワークを用いた高速データ駆動構成を提案する。
提案手法の有効性は,複数のIEEEテストケースに対して,最大2倍の高速かつ高精度な解を示す数値的な研究によって主張する。
論文 参考訳(メタデータ) (2022-08-30T09:27:59Z) - A Multi-Objective approach to the Electric Vehicle Routing Problem [0.0]
電気自動車ルーティング問題(EVRP)は、燃料ベースの車からより健康的で効率的な電気自動車(EV)に移行するために、研究者や工業者から大きな関心を集めている。
以前の作業では、ロジスティクスや配送関連のソリューションをターゲットにしており、複数の停止を行った後、同質の商用EVが最初のポイントに戻らなければならない。
我々は、旅行時間と充電の累積コストを最小化する多目的最適化を行う。
論文 参考訳(メタデータ) (2022-08-26T05:09:59Z) - A Reinforcement Learning Approach for Electric Vehicle Routing Problem
with Vehicle-to-Grid Supply [2.6066825041242367]
EVルーティングに強化学習(RL)を用いたQuikRouteFinderを提案する。
RLの結果は混合整数線形プログラム(MILP)と遺伝的アルゴリズム(GA)のメタヒューリスティックスに基づく正確な定式化と比較される。
論文 参考訳(メタデータ) (2022-04-12T06:13:06Z) - Learning to Operate an Electric Vehicle Charging Station Considering
Vehicle-grid Integration [4.855689194518905]
本稿では、充電ステーションの利益を最大化するために、新しい集中的アロケーションと分散実行(CADE)強化学習(RL)フレームワークを提案する。
集中配置プロセスでは、EVを待機スポットまたは充電スポットに割り当て、分散実行プロセスでは、各充電器は、共有再生メモリからアクション値関数を学習しながら、独自の充電/放電判定を行う。
数値計算により,提案したCADEフレームワークは計算効率が高く,拡張性も高く,ベースラインモデル予測制御(MPC)よりも優れていた。
論文 参考訳(メタデータ) (2021-11-01T23:10:28Z) - Risk Adversarial Learning System for Connected and Autonomous Vehicle
Charging [43.42105971560163]
我々は、コネクテッドかつ自律的な自動車充電インフラ(CAV-CI)のための合理的意思決定支援システム(RDSS)の設計について検討する。
検討されたCAV-CIでは、配電系統オペレーター(DSO)が電気自動車供給装置(EVSE)を配備し、人間駆動のコネクテッドカー(CV)と自動運転車(AV)のためのEV充電設備を提供する。
人力EVによる充電要求は、実際の需要よりもエネルギーと充電時間を必要とすると不合理になる。
我々は,CAV-CIが解決する新たなリスク対向型マルチエージェント学習システム(ALS)を提案する。
論文 参考訳(メタデータ) (2021-08-02T02:38:15Z) - Efficient algorithms for electric vehicles' min-max routing problem [4.640835690336652]
輸送部門から排出される温室効果ガスの増加は、企業や政府が電気自動車(EV)の増産と支援を図っている。
近年の都市化と電子商取引の進展により、輸送会社は従来の車両をEVに置き換え、持続的で環境に優しい運転の取り組みを強化している。
EV車両の展開は、限られた範囲を緩和し、バッテリー劣化率を軽減するために、効率的なルーティングと充電戦略を要求する。
論文 参考訳(メタデータ) (2020-08-07T18:45:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。