Energy-Efficient Dynamic Training and Inference for GNN-Based Network Modeling
- URL: http://arxiv.org/abs/2503.18706v1
- Date: Mon, 24 Mar 2025 14:17:57 GMT
- Title: Energy-Efficient Dynamic Training and Inference for GNN-Based Network Modeling
- Authors: Chetna Singhal, Yassine Hadjadj-Aoul,
- Abstract summary: We propose an energy-efficient dynamic orchestration of Graph Neural Networks based model training and inference framework for context-aware network modeling and predictions.<n>We leverage the tripartite graph model to represent a multi-application system with many compute nodes.<n>We apply the constrained graph-cutting using QAO to find the feasible energy-efficient configurations of the GNN-based model and deploying them on the available compute nodes to meet the network modeling application requirements.
- Score: 5.049057348282933
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Efficient network modeling is essential for resource optimization and network planning in next-generation large-scale complex networks. Traditional approaches, such as queuing theory-based modeling and packet-based simulators, can be inefficient due to the assumption made and the computational expense, respectively. To address these challenges, we propose an innovative energy-efficient dynamic orchestration of Graph Neural Networks (GNN) based model training and inference framework for context-aware network modeling and predictions. We have developed a low-complexity solution framework, QAG, that is a Quantum approximation optimization (QAO) algorithm for Adaptive orchestration of GNN-based network modeling. We leverage the tripartite graph model to represent a multi-application system with many compute nodes. Thereafter, we apply the constrained graph-cutting using QAO to find the feasible energy-efficient configurations of the GNN-based model and deploying them on the available compute nodes to meet the network modeling application requirements. The proposed QAG scheme closely matches the optimum and offers atleast a 50% energy saving while meeting the application requirements with 60% lower churn-rate.
Related papers
- Generative Diffusion Models for Resource Allocation in Wireless Networks [77.36145730415045]
We train a policy to imitate an expert and generate new samples from the optimal distribution.
We achieve near-optimal performance through sequential execution of the generated samples.
We present numerical results in a case study of power control in multi-user interference networks.
arXiv Detail & Related papers (2025-04-28T21:44:31Z) - An Attempt to Devise a Pairwise Ising-Type Maximum Entropy Model Integrated Cost Function for Optimizing SNN Deployment [0.0]
A spiking neural network (SNN) deployment process often involves partitioning the neural network onto processing units within the neuromorphic hardware.
Finding optimal deployment schemes is an NP-hard problem.
These objectives require consideration of network dynamics shaped by neuron activity patterns.
Our approach focuses on network dynamics, which are hardware-independent and can be modeled separately from specific hardware configurations.
arXiv Detail & Related papers (2024-07-09T16:33:43Z) - Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch [72.26822499434446]
Auto-Train-Once (ATO) is an innovative network pruning algorithm designed to automatically reduce the computational and storage costs of DNNs.
We provide a comprehensive convergence analysis as well as extensive experiments, and the results show that our approach achieves state-of-the-art performance across various model architectures.
arXiv Detail & Related papers (2024-03-21T02:33:37Z) - Pointer Networks with Q-Learning for Combinatorial Optimization [55.2480439325792]
We introduce the Pointer Q-Network (PQN), a hybrid neural architecture that integrates model-free Q-value policy approximation with Pointer Networks (Ptr-Nets)
Our empirical results demonstrate the efficacy of this approach, also testing the model in unstable environments.
arXiv Detail & Related papers (2023-11-05T12:03:58Z) - Pontryagin Optimal Control via Neural Networks [19.546571122359534]
We integrate Neural Networks with the Pontryagin's Maximum Principle (PMP), and propose a sample efficient framework NN-PMP-Gradient.
The resulting controller can be implemented for systems with unknown and complex dynamics.
Compared with the widely applied model-free and model-based reinforcement learning (RL) algorithms, our NN-PMP-Gradient achieves higher sample-efficiency and performance in terms of control objectives.
arXiv Detail & Related papers (2022-12-30T06:47:03Z) - Vertical Layering of Quantized Neural Networks for Heterogeneous
Inference [57.42762335081385]
We study a new vertical-layered representation of neural network weights for encapsulating all quantized models into a single one.
We can theoretically achieve any precision network for on-demand service while only needing to train and maintain one model.
arXiv Detail & Related papers (2022-12-10T15:57:38Z) - Graph-based Algorithm Unfolding for Energy-aware Power Allocation in
Wireless Networks [27.600081147252155]
We develop a novel graph sumable framework to maximize energy efficiency in wireless communication networks.
We show the permutation training which is a desirable property for models of wireless network data.
Results demonstrate its generalizability across different network topologies.
arXiv Detail & Related papers (2022-01-27T20:23:24Z) - Graph Neural Network based scheduling : Improved throughput under a
generalized interference model [3.911413922612859]
We propose a Graph Convolutional Neural Networks (GCN) based scheduling algorithm for adhoc networks.
A notable feature of this work is that the proposed method do not require labelled data set (NP-hard to compute) for training the neural network.
arXiv Detail & Related papers (2021-10-31T10:36:11Z) - Data-Driven Random Access Optimization in Multi-Cell IoT Networks with
NOMA [78.60275748518589]
Non-orthogonal multiple access (NOMA) is a key technology to enable massive machine type communications (mMTC) in 5G networks and beyond.
In this paper, NOMA is applied to improve the random access efficiency in high-density spatially-distributed multi-cell wireless IoT networks.
A novel formulation of random channel access management is proposed, in which the transmission probability of each IoT device is tuned to maximize the geometric mean of users' expected capacity.
arXiv Detail & Related papers (2021-01-02T15:21:08Z) - Optimizing Large-Scale Fleet Management on a Road Network using
Multi-Agent Deep Reinforcement Learning with Graph Neural Network [0.8702432681310401]
We propose a novel approach to optimize fleet management by combining multi-agent reinforcement learning with graph neural network.
We design a realistic simulator that emulates the empirical taxi call data, and confirm the effectiveness of the proposed model under various conditions.
arXiv Detail & Related papers (2020-11-12T03:01:37Z) - Deep learning architectures for inference of AC-OPF solutions [0.4061135251278187]
We present a systematic comparison between neural network (NN) architectures for inference of AC-OPF solutions.
We demonstrate the efficacy of leveraging network topology in the models by constructing abstract representations of electrical grids in the graph domain.
arXiv Detail & Related papers (2020-11-06T13:33:18Z) - Resource Allocation via Graph Neural Networks in Free Space Optical
Fronthaul Networks [119.81868223344173]
This paper investigates the optimal resource allocation in free space optical (FSO) fronthaul networks.
We consider the graph neural network (GNN) for the policy parameterization to exploit the FSO network structure.
The primal-dual learning algorithm is developed to train the GNN in a model-free manner, where the knowledge of system models is not required.
arXiv Detail & Related papers (2020-06-26T14:20:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.