論文の概要: MedAgent-Pro: Towards Evidence-based Multi-modal Medical Diagnosis via Reasoning Agentic Workflow
- arxiv url: http://arxiv.org/abs/2503.18968v2
- Date: Thu, 22 May 2025 07:23:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-23 14:49:22.030667
- Title: MedAgent-Pro: Towards Evidence-based Multi-modal Medical Diagnosis via Reasoning Agentic Workflow
- Title(参考訳): MedAgent-Pro:Reasoning Agentic Workflowによるエビデンスベースのマルチモーダル医療診断を目指して
- Authors: Ziyue Wang, Junde Wu, Linghan Cai, Chang Han Low, Xihong Yang, Qiaxuan Li, Yueming Jin,
- Abstract要約: 現代医学では、臨床診断は主にテキストおよび視覚データの包括的分析に依存している。
大規模視覚言語モデル(VLM)およびエージェントベース手法の最近の進歩は、医学的診断に大きな可能性を秘めている。
現代医学における診断原理に従う新しいエージェント推論パラダイムであるMedAgent-Proを提案する。
- 参考スコア(独自算出の注目度): 14.478357882578234
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In modern medicine, clinical diagnosis relies on the comprehensive analysis of primarily textual and visual data, drawing on medical expertise to ensure systematic and rigorous reasoning. Recent advances in large Vision-Language Models (VLMs) and agent-based methods hold great potential for medical diagnosis, thanks to the ability to effectively integrate multi-modal patient data. However, they often provide direct answers and draw empirical-driven conclusions without quantitative analysis, which reduces their reliability and clinical usability. We propose MedAgent-Pro, a new agentic reasoning paradigm that follows the diagnosis principle in modern medicine, to decouple the process into sequential components for step-by-step, evidence-based reasoning. Our MedAgent-Pro workflow presents a hierarchical diagnostic structure to mirror this principle, consisting of disease-level standardized plan generation and patient-level personalized step-by-step reasoning. To support disease-level planning, an RAG-based agent is designed to retrieve medical guidelines to ensure alignment with clinical standards. For patient-level reasoning, we propose to integrate professional tools such as visual models to enable quantitative assessments. Meanwhile, we propose to verify the reliability of each step to achieve evidence-based diagnosis, enforcing rigorous logical reasoning and a well-founded conclusion. Extensive experiments across a wide range of anatomical regions, imaging modalities, and diseases demonstrate the superiority of MedAgent-Pro to mainstream VLMs, agentic systems and state-of-the-art expert models. Ablation studies and human evaluation by clinical experts further validate its robustness and clinical relevance. Code is available at https://github.com/jinlab-imvr/MedAgent-Pro.
- Abstract(参考訳): 現代医学において、臨床診断は、主にテキストおよび視覚データの包括的分析に依存しており、体系的かつ厳密な推論を保証するために、医療の専門知識に頼っている。
大規模視覚言語モデル(VLM)やエージェントベースの手法の最近の進歩は、マルチモーダル患者データを効果的に統合する能力によって、医療診断に大きな可能性を秘めている。
しかし、彼らはしばしば直接的な答えを提供し、定量的分析なしで経験的な結論を引き出すため、信頼性と臨床使用性は低下する。
本稿では,現代医学における診断原則に従う新たなエージェント推論パラダイムであるMedAgent-Proを提案する。
私たちのMedAgent-Proワークフローは、この原則を反映する階層的な診断構造を示し、疾患レベルの標準化されたプラン生成と患者レベルのパーソナライズされたステップバイステップ推論で構成されています。
疾患レベルの計画を支援するために、RAGベースのエージェントは、医療ガイドラインを検索し、臨床標準に適合するように設計されている。
患者レベルの推論のために,視覚モデルなどの専門的ツールを統合して定量的評価を実現することを提案する。
一方、我々は、厳密な論理的推論と明確な結論を強制し、エビデンスに基づく診断を実現するために、各ステップの信頼性を検証することを提案する。
MedAgent-Proが主流のVLMやエージェントシステム、最先端の専門家モデルよりも優れていることを示す。
臨床専門家によるアブレーション研究と人的評価は、その堅牢性と臨床的関連性をさらに検証する。
コードはhttps://github.com/jinlab-imvr/MedAgent-Proで入手できる。
関連論文リスト
- TAMA: A Human-AI Collaborative Thematic Analysis Framework Using Multi-Agent LLMs for Clinical Interviews [54.35097932763878]
Thematic Analysis (TA) は、構造化されていないテキストデータの潜在意味を明らかにするために広く使われている定性的手法である。
本稿では,多エージェントLEMを用いた人間とAIの協調的テーマ分析フレームワークTAMAを提案する。
TAMA は既存の LLM 支援TA アプローチよりも優れており,高い主題的ヒット率,カバレッジ,独特性を実現している。
論文 参考訳(メタデータ) (2025-03-26T15:58:16Z) - Structured Outputs Enable General-Purpose LLMs to be Medical Experts [50.02627258858336]
大規模言語モデル(LLM)は、しばしばオープンエンドの医学的問題に苦しむ。
本稿では,構造化医療推論を利用した新しいアプローチを提案する。
我々の手法は85.8のファクチュアリティスコアを達成し、微調整されたモデルを上回る。
論文 参考訳(メタデータ) (2025-03-05T05:24:55Z) - LLM-MedQA: Enhancing Medical Question Answering through Case Studies in Large Language Models [18.6994780408699]
大規模言語モデル (LLM) は、医学的質問応答において重大な課題に直面している。
マルチエージェント医療質問応答システムに類似の事例生成を取り入れた新しい手法を提案する。
本手法は, モデル固有の医療知識と推論能力を活用し, 追加のトレーニングデータの必要性を解消する。
論文 参考訳(メタデータ) (2024-12-31T19:55:45Z) - MedCoT: Medical Chain of Thought via Hierarchical Expert [48.91966620985221]
本稿では,新しい階層的検証手法であるMedCoTについて述べる。
生体画像検査における解釈可能性と精度を高めるように設計されている。
4つの標準Med-VQAデータセットに対する実験的評価は、MedCoTが既存の最先端アプローチを上回ることを示している。
論文 参考訳(メタデータ) (2024-12-18T11:14:02Z) - Towards Next-Generation Medical Agent: How o1 is Reshaping Decision-Making in Medical Scenarios [46.729092855387165]
本稿では,医療用AIエージェントのバックボーンLSMの選択について検討する。
我々の研究結果は、o1の診断精度と一貫性を高める能力を示し、よりスマートでより応答性の高いAIツールへの道を開いた。
論文 参考訳(メタデータ) (2024-11-16T18:19:53Z) - Conversational Disease Diagnosis via External Planner-Controlled Large Language Models [18.93345199841588]
本研究は,医師のエミュレートによる計画能力の向上を目的としたLCMに基づく診断システムを提案する。
実際の患者電子カルテデータを利用して,仮想患者と医師とのシミュレーション対話を構築した。
論文 参考訳(メタデータ) (2024-04-04T06:16:35Z) - RJUA-MedDQA: A Multimodal Benchmark for Medical Document Question
Answering and Clinical Reasoning [14.366349078707263]
RJUA-MedDQAは医学専門分野における総合的なベンチマークである。
本稿では医学専門分野の総合的なベンチマークであるRJUA-MedDQAを紹介する。
論文 参考訳(メタデータ) (2024-02-19T06:57:02Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
我々は,emphDoctorをプレイヤとして,NPC間の動的医療相互作用をシミュレーションするフレームワークであるtextbfAI Hospitalを紹介した。
この設定は臨床シナリオにおけるLCMの現実的な評価を可能にする。
高品質な中国の医療記録とNPCを利用したマルチビュー医療評価ベンチマークを開発した。
論文 参考訳(メタデータ) (2024-02-15T06:46:48Z) - Beyond Direct Diagnosis: LLM-based Multi-Specialist Agent Consultation
for Automatic Diagnosis [30.943705201552643]
本研究では,潜在的な疾患に対するエージェントの確率分布を適応的に融合させることにより,現実世界の診断過程をモデル化する枠組みを提案する。
提案手法では,パラメータ更新とトレーニング時間を大幅に短縮し,効率と実用性を向上する。
論文 参考訳(メタデータ) (2024-01-29T12:25:30Z) - "My nose is running.""Are you also coughing?": Building A Medical
Diagnosis Agent with Interpretable Inquiry Logics [80.55587329326046]
本稿では,DSMDの対話マネージャを実装するための,より解釈可能な意思決定プロセスを提案する。
推論を行うために、非常に透明なコンポーネントを持つモデルを考案する。
実験の結果,診断精度は7.7%,10.0%,3.0%向上した。
論文 参考訳(メタデータ) (2022-04-29T09:02:23Z) - Towards Causality-Aware Inferring: A Sequential Discriminative Approach
for Medical Diagnosis [142.90770786804507]
医学診断アシスタント(MDA)は、疾患を識別するための症状を逐次調査する対話型診断エージェントを構築することを目的としている。
この研究は、因果図を利用して、MDAにおけるこれらの重要な問題に対処しようとする。
本稿では,他の記録から知識を引き出すことにより,非記録的調査に効果的に答える確率に基づく患者シミュレータを提案する。
論文 参考訳(メタデータ) (2020-03-14T02:05:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。